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Preface 
 
 

This manual is about a software tool, as well as about a journey.  We begin with a brief history.  
Beginning in 1956, Texas Instruments fabricated the first transistor circuit, and a few years latter the FFT 
was discovered in 1965.  Signal processing at that time was just in its infancy.  Starting in 1974, Intel 
came out with the 8-bit 8080 microprocessor with a whooping 2 MHz cycle time, and starting in the 
eighties, Bell Labs developed the Unix operating system and the C programming language. That’s when 
software development made a giant leap forward. That little 40 pin chip 8080 microprocessor from Intel 
led to the incredible microprocessors we have today.  It’s also led companies, such as Microsoft and 
Apple, to develop operating systems on personal computers beginning in the nineties.   

Just as a coin as two sides, namely heads and tails, in a like manner these advances in technology 
happened both in hardware and software.  On the hardware side we have integrated circuits (ICs), the 
analog-to-digital converter (ADC), the digital-to-analog converter (DAC), the field programmable gate 
arrays (FPGA), and full systems on a chip (SOC) or application-specific integrated circuits (ASIC).  A 
relationship known as Moore’s law, states that the cost of processing a specified processing task on an IC 
drops be a factor of two every 18 months. In a like manner, the development of the C and C++ 
programming languages and compliers has lead to a huge increase in the efficiency of software 
development.  Also the development of the YACC/LEX complier technology has led to the efficient 
development of programming languages for specific tasks such as work stations for ASIC design, etc.  All 
of these technologies as mentioned above made it possible for this author to develop this design tool. 

This software tool can be likened to a small wrench in an engineers tool kit, as much more powerful 
design and analysis systems might be needed.  However, as engineers of yesterday carried and used actual 
sliderules, which lasted a life time, this software tool can last an engineer’s life time also, so long as his 
personal computer and Windows laptop are up and running. 

Organization of Manual 
 

Although some chapters in this manual are highly technical, it is not the intent of this manual to 
educate the user in these disciplines, as it would make the text unnecessary long and burdensome, and do 
an injustice to the many technical sources that are widely available.  The intent of this manual is develop 
and describe a software platform that is easy to learn and use, and is capable of solving a variety of 
engineering design problems. In order to arrive at that goal, we work through different engineering 
disciplines and design examples to find bugs in the compiler/interpreter, plotting routines, etc., and most 
of all, to determine what kernel functions are missing to complete these design problems.  It turns out that 
most software problems are functions or features that are left out of the system.  Also note that is not the 
intent of this design system to try a provide a function (or subroutine) to solve as many different 
situations that might arise, but instead relay on the user to develop there own procedures or modify the 
provided shell script code provided by this SOFTWARE to solve many problems that come up.  I believe 
at this point, that there are enough kernel functions as listed in Appendix A, for the user to develop 
algorithms and engineering designs.   

Having said that,  Chapters 1 through 7 cover introductory material as well as describing the 
SOFTWARE, while Chapters 8 through 18 cover same basic engineering  topics in the area of 
telecommunications.  These chapters have footnotes for topics that reference the list of references 
provided at the end of each chapter, and some topics and examples show the shell script code so the 
reader can learn and relate to the information provided in the first seven chapters, 

Chapter 1 contains introductory information valuable for everyone. Chapter 2 provides a short 
installation and a getting started section as well as tutorials on various selected topics dealing with the 
main menu tile selections. Chapter 3 is a detailed description of the Shell Script language in terms of 
syntax, and a presentation of the shell’s language grammar. Chapter 4 covers Matrix and Vector 
operations and its associated grammar. Chapter 5 is a description of the built in Custom editor.  Chapter 6 
covers plotting details with examples of the different plots available in this design tool. Chapter 7 is a 
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description of the user Dialog’s interface with examples, and a description of the user defined Menu 
option.  

Chapter 8 covers Digital Filter design using the GUI interface. Topics covered include: FIR filter 
design using the Parks-McCellan algorithm; FIR half-band Filters; FIR Differentiators; The Hilbert 
Transformer; MAXFLAT FIR design; Windowed FIR design; IIR Filter Design; Interpolated FIR filters; 
Raised Cosine Filter Design; Root raised Cosine Filter Design; Meteor Filter Design; Hogenauer Filter 
Design; Filter Response Analysis; and Fixed Point Coefficients;  

Chapter 9 covers Spectral Analysis including Convolution /Correlation. Topics include Power 
Density Spectrum using the Window-Overlap Method; PSD for Complex Signals in Noise; and the Zoom 
FFT using the Chirp Transform Algorithm.   

Chapter 10 provides some examples of Signal Processing Applications. Topics include General IIR 
Filter Design using a user generated dialog procedure; Lattice Filter Structures; The Z transform 
Inversion; Analog Filter Design using a user generated dialog procedure; The CELP Algorithm used in 
cell phones; and OFDM presentation of 802.11a (WiFi) for determining  carrier frequency offset (CFO), 
and symbol timing offset (STO).  

Chapter 11 covers some examples of Random Signals and their Distributions. Topics covered include 
the Uniform Random variable; the Gaussian (Normal) Random variable; the Chi-square (X2) Central 
Random Variable; the Chi-square (X2) Non-Central Random Variable; the Rayleigh Random Variable; 
and the Rican Random Variable.   

Chapter 12 provides some examples in the area of Adaptive Filters. Topics covered include: A 
Wiener Filter for Noise Canceling; Noise Canceling using the Normalized LMS Algorithm; An example 
of the Steepest Decent Algorithm; Echo Cancelation using a Fast Block Adaptive Filter; System 
identification using an Adaptive Filter; A 16-QAM decision Directed Equalizer using NLSM; and QPSK 
and Blind Equalizers.  

In Chapter 13 we show some examples of FEC Channel Coding. Topics include the Golay (12,24) 
Code; BCH Error Correcting Cyclic Codes; A Reed-Solomon 255,233 with Erasures; The Reed-Solomon 
CIRC; A Rate K = ½ Viterbi Decoder; and a Turbo encoder/decoder example.  

Chapter 14 covers examples of Matrix/Vector computations. Topics include The QR Decomposition 
with Column Pivoting; Cholesky factorization; The Complete Orthogonal Decomposition with Column 
Pivoting; A Determinate Example; The Hessenburg form of a Matrix; Schur Decomposition; Matrix 
Inverse Examples; A Lu Factorization  Example; Solving Linear Equations; A Least Squares Fit; A 
Matrix Pseudo inverse Example; A Matrix Norm-2 Least Squares Example; An Over-Determined Set of 
Equations; Eigenvalue/Eigenvector Examples; A reduced Row Echelon Example; Matrix Vector Norms; 
Toeplitz Matrices; The Square Root of a Matrix; and a Generalized Eigenvalue Problem.   

Chapter 15 provides some examples of Special Functions; Examples include Bessel Functions of the 
first kind Jn;  Bessel Functions Yn, In, and Kn; Incomplete Elliptic Integrals of the 1st and 2nd kind; Error 
functions erf(x) and erfc(x);  The Gamma Function P(a,x); The Beta Function B(z,w);  The Jacobian 
Elliptic Function; The Incomplete Gamma Function; The Exponential Integral; Chebyshev Polynomials; 
Jacobi Polynomials;  and Legendre Polynomials. 

Chapter 16 provides some examples in the area of solving some ordinary differential equations and 
Numerical Integration problems.  Topics include breaking down a higher order ODE to a cascade of 1st 
order differential equations, and solving using the Runge Kutta 4th order algorithm, and presenting several 
examples;  A Numerical Integration Example using Simpson’s Rule and Romberg Integration with 
Richardson’s improvement; The Minimum of a Function of a Single Variable; and The Minimum of a 
Function of Several Variables.   

Chapter 17 covers selected examples in Control Engineering.  Topics include an example of a Unit 
Step Response; A Unit-Impulse Response;  Step Responses of Second-Order Systems; Bode Plots from a 
Transfer Function;  Nyquist Plots from State-Space;  Gain Adjustment for % Overshoot; A PI 
Compensator; A Lag Compensator; An Ideal Derivative Compensator; A Lead-Lag Compensator; A 
Regulator Design in State-Space with Pole-Placement; A Lag Compensator; An ideal Derivative 
Compensator (PD);  Controller versus Observable Design in State Space; and a Digital Compensator.   

Chapter 18 covers Microwave Transistor Amplifier design examples using a graphical user interface 
to the Smith Chart with one’s mouse and keyboard. Topics include A Simple Impedance Match;  Small 
Transistor Design for MAG; Small Transistor Design for Specified Gain;  Small Transistor Design for 
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Minimum Noise; Small Transistor Design for Stability;  Micro-Strip Matching – Different Characteristic 
Impedances;  A Single Stub Tuner;  A Double Stub Tuner;  and Plotting of Performance Data.   

Appendix A is a series of block tables listing the name along with a function statement of the supplied 
functions that comes with this software, grouped together on a functional basis.  Appendix B is a 
description of the equations used in the Smith Chart Design Tool. 
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 Chapter 1 - Introduction 
 
Slide-RuleTM  has been designed as a basic engineering/scientific toolbox for engineers, scientists, and 
students.  It has been designed for the popular PC platforms and running under Microsoft® Windows.  Its 
design intent is to provide a computational platform to allow one to develop algorithms and carry out 
complex calculations in a simple and straight forward manner.  It comes with over 500 functions that 
cover Mathematical Functions, Special Mathematical Functions, Random Number and Distributions, 
Matrix/Vector Operations, Digital Filter Design, Spectral Analysis, Signal Processing Functions, 
Adaptive Filters, Control Engineering, Polynomial Functions, Differential Equations and Numerical 
Integration, Non-Linear Methods, Elementary Statistics, File I/O and String Functions, and over 50 
Plotting routines.  
Slide-Rule'sTM universal engine is a simple shell script language that has the look and feel of the ever 
popular C-language.  In addition to the basic constructs of the C-language, are added matrix and vector 
types, in both real and complex form. These types allow the user to work at a higher level, while at the 
same time employing the lower level power and familiarity of the C-language type shell script.  Since the 
running of the shell script is done in an interpretive manner, the user is freed from the chore of compiling 
and linking code using a commercial bought compiler.  Also, because of the many built in plotting 
routines, the user can quickly write and run a shell script that allows one to visualize data in a wide 
variety of formats.  All plotted data to the monitor can also be output to a printer device as well.  You can 
also write all plotted output as an extended metafile that can be imported into popular word processing 
programs such as Microsoft’s Word for Windows. 

Besides the supplied internal functions, Slide-RuleTM  allows the user to build their own procedures 
(including subroutines) based on the shell script language.  The shell script language is modeled after the 
universal C-language, and can be considered a subset of it.  Only the basic constructs have been 
implemented in the shell, as well as high level matrix and vector operations, which allow users from all 
backgrounds to easily write shell script procedures to perform the intended task or analysis that the user 
desires.  Since C is ubiquitous in industry and academia, the practicing engineer can easily switch to this 
SOFTWARE system without switching gears to a completely different type of language.  Included in the 
internal functions are a extensive set of plotting routines that allows the user to visualize data in either 2D 
or 3D modes, and with a wide variety of options that allow plots to be customized to the users desire.  All 
plotted output to the display monitor may also be output to a suitable printer for a permanent record.  The 
user can also print variables and format ASCII text strings to a file during the running of the shell script 
either for a permanent record, or as a verification of computed results for a given procedure.  Also 
included within the internal functions, are file I/O functions that allow the user to open up external disk 
files for reading and/or writing of data in a wide variety of formats.  During the running of a given shell 
script, the user can open up several plotting windows that are output to one’s  monitor, and then use the 
pause function to examine the output.  This allows the user the ability to continue the shell or terminate 
the procedure based on examining the output.  Also, there are visual hot keys that provide the user with 
simplifying shortcuts to examine the printed output file or quickly get back to the shell script file to make 
a quick modification and then rerun the shell.  Slide-Rule has been designed to be user friendly.  It even 
comes with a custom editor that is seamlessly integrated into the system.  When a given line of code is in 
error, you’re immediately given an error message, and then put into the custom editor at that line of code.  
The user can also edit and modify all displayed plot(s) using the Customize dialog procedures as will be 
explained in detail in Chapter 6.  This allows the user to modify the plot(s) by changing colors, line styles, 
titles, etc., with the click of his mouse and or keyboard input into a dialog box.  This not only updates the 
display immediately, but updates the code as well.  The user is freed from the boring tedious task of 
coding additional lines of code which can be time consuming and frustrating. 
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System Design Criteria 
 
The following is the system design criteria that went into the design and motivation for developing this 
engineering design tool. 
 

• The shell script grammar will be a subset of the C programming language.  
• Added to the above requirement, will be added matrix and vector types, both in real and complex 

forms, to allow programming at a high level. 
• The complier will be single pass, and produce ‘tree’ code, that will be executed in an interpretive 

manner. 
• Because of a single pass compiler, the code will be required to be ordered as follows: Global 

constants; Global variables; Subroutine code; Global variable and constants (for main code); 
Main Code. 

• The compiler will be developed using a C++ version of YACC/LEX. 
• Subroutine code will be able to be loaded and executed with a #include <”…”> directive. 
• A system parameter will exist to specify the sub-directories to look for the subroutine code if not 

found in the current running sub-directory. 
• A file with an extension of *.h will exist to specify multiple subroutine code files which will 

have the extension of *.txt. 
• The variable types will consist of ‘int’ or ‘long’ (32-bit signed integers); ‘float’ or ‘double’ 

(IEEE 64-bit double precision); ‘complex’ (two signed doubles to form a complex number); 
‘vector’ (a collection of 64-bit double precision numbers); ‘matrix’ (a two dimensional collection 
of doubles); ‘veccmplx’ (a complex vector type); ‘matcmplx’ (a complex matrix type). 

• The ‘printf’ function as found in C, will be implemented, and the output will be written to a file 
with the shell script file name, but with the extension of *.prn. 

• The ‘sprintf’ function will also be implemented as in C to format ASCII strings to a ‘char’ type 
array. 

• A function Print(…) will be implemented to print vector, and matrix types both in real and 
complex form on a row basis with 10 numbers per row for real, and 5 for complex.  This 
function will also do the same for integer, float, and complex arrays, or single variables.  This 
feature is for a permanent record or as a debugging tool. 

• The type ‘char’ will only be used for storing ASCII string data.  
• All shell scripts when executed, will have a *.prn file generated, with the run time in seconds 

with a resolution of milliseconds printed last. 
• If no plot(s) are produced as output from a given shell script execution, then the print file will be 

displayed using the Windows® WordPad program.  Otherwise the first plot produced will be 
displayed to take up most of one’s monitor screen. 

• The top plot windows bar will display the current plot number and the total number of plot 
windows produced in the shell script run. 

• The tab and shift+tab keys will be used to display the next plot window or the previous plot 
window.  For multiple plots produced in a given shell script, the user will be able to display 
multiple combinations up to a total of 10.  Refer to Multiple Windows Displayed at the end of 
Chapter 6 - Plotting Details. 

• All variables used in the shell script, will have to be specified in a declaration statement before 
use in an expression, else a compile error will be generated with an appropriate error message, 
and the custom editor will be executed to display the code, and high lite the offending line of 
code.  This will include any subroutine code that was loaded using the #include directive. 

• All variables used in the shell script, once declared as a certain type, can NEVER be changed to 
a different type. 
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• All array type declarations of int, long, float, double, complex, vector, matrix, veccmplx, and 
matcmplx will have there storage initialized to zero at compile time. 

• For types int, long, float, double, and complex, to be an array type, they have to have a least 
TWO elements. Note if you define with the * operator, the array will have FOUR elements. 

• Variables of type int, long, float double, and complex, that are not arrays, are not initialized at 
compile time, and if not first set to a value with an assignment statement (=), will generate a run 
type error if detected in an expression. 

• All array variables that over run their declared storage during run time will generate a run type 
error. 

• For types of vector, matrix, veccmplx, and matcmplx that are declared with declaration 
statements, but with no storage specifier, they will have an internal storage of one, and be 
initialized to zero.  Its done this way since if one forgets to allocate storage before use, one gets 
an exception 11 error, which takes one to no mans land, and there’s no way to trace where the 
error occurred. 

• For matrix types, referencing a specific element with double brackets ([] []) will return a float (or 
complex) type in an expression; referencing with a single bracket {[]}, will return a row vector 
(or veccmplx) type in an expression; while referencing with a single bracket ([]) with a preceding 
colon (:), will return a column vector type.  Note the value returned is a temporary, and does 
NOT violate the principle that a declared variable can never be changed. 

• For vector types, referencing with a single bracket ([]), returns a float (or complex) type in an 
expression. 

• In an expression involving matrix types, if the resulting expression results in a 1 x 1 matrix 
dimension, the expression will be turned into a temporary float or complex variable.  This also 
shall hold true for vector expressions. 

• All subroutine shell script code, must have type specifers as in C, and a return type of either 
‘void’, ‘int’ or ‘long’, float’ or ‘double’, ‘complex’, ‘vector’, ‘matrix’, ‘veccmplx’, or 
‘matcmplx’.  A run type error will be produced if there is not a perfect match in type specifiers or 
number of parameters passed in calling a subroutine. 

• As in C++, single variables of type int or long, float or double, or complex can be passed by 
reference to a subroutine that has a type & reference operator, and have the variable modified at 
global scope. 

• The variable names declared in a subroutine will have local scope, i.e., their private. 
• There will be no stack implemented in subroutine code as in C.  This means the code in not 

recursive.  The variables declared in the subroutine prototype declaration statement, along with 
the other internal variable declarations, are all static variables, which mean that they have private 
storage. This means that if one declares a variable in a declaration statement with a value, that 
value will be set in the compiler, and not re-done each time the subroutine is called.  We make 
this choice to simplify the compiler and increase execution speed.  So if one wants a variable 
initialized to a certain value each time the subroutine is called, code with a declaration statement 
along with an additional assignment statement.  Note that all arrays passed to a subroutine in the 
calling sequence, if modified in the subroutine code, will be modified at global scope.   

• We don’t allow the star operator (*) to de-reference an array type as in C.  One must use brackets 
([ ]).   We don’t need as an example, to de-reference an array of pointers, etc., as this can be quite 
confusing to engineers and non-professional programmers. 

• We don’t allow assignment statements to be imbedded in other statements.  For example, in an 
‘if’ statement, if one writes ‘if(avar = 1)’, the user will get a compiler error.  However, this 
statement is allowed in ANSI C code.  The user meant to write it as ‘if(avar == 1)’, but no error 
is reported in C.  This has caused at lot of grief in C coded systems, because the ‘=’ key wasn’t 
depressed hard enough, and the programmer can spent hours, or days looking for the error, 
because the statement as coded, always produces a TRUE result. 

• For displayed plots, customize features will be implemented, to allow the user to annotate the 
current displayed plot with their mouse and keyboard, and at the same time update the shell 
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script code.  A detailed description of these features can be found in Chapter 6 -  Plotting 
Details.  This is highly important, because we don’t want to turn engineers into programmers.  

• A custom editor will be written that will have all the features of a cut and paste editor, as well as 
line editing capabilities such as the Unix vi editor.  A series of ‘hot keys’ (function keys) will be 
employed to lessen key strokes.  The custom editor is described in detail in Chapter 5. 

• A series of ‘hot keys’ (function keys) will be implemented to get to the: custom editor to display 
the current selected shell script; the print output file; the command prompt (DOS); the windows 
calculator program; the GUI reference for the Digital Filter design tool; and the function 
reference documentation of the 500+ functions as listed in Appendix A.  These ‘hot keys’ will be 
displayed in red on the bottom windows bar of the Slide-Rule graphic as shown in Figure2.1 of 
Chapter 2. 

• A complete functions reference will be available from the SOFTWARE both in the main 
program and the custom editor by depressing function key F7.  Each function that comes with 
the software will have a one sentence description of the function, a prototype(s) description, an 
example if appropriate, and references as necessary.  One won’t need an internet connection to 
determine the description of a particular function as listed in Appendix A. 

• A menu item will be available for the user to detect the latest version of the SOFTWARE at a 
WEB site, with the ability to download and install the new version of the SOFTWARE. 

• An attempt will be made to detect every possible grammar error in the compiler and in the run 
time interpreter, and transfer the user to the custom editor with an error message (hopefully at the 
offending line of code).  Note that the grammar is described in detail in Chapters 3 and 4. 

• The user is urged not to consult a C programming manual, as it will mislead the user.  The shell 
grammar has certain features like C, but is not an implementation of ANSI C.  I could have made 
up a different shell script, but the idea is to lessen the learning curve for using this tool. 

• For certain functions such as the Parks McCellan FIR filter design module, the Matrix/Vector 
Computations, or the Special Mathematical Functions,  as described in Chapters 8, 14, and 15,  
we use code downloaded from Netlib, and modify as necessary.  The bottom line, ‘We don’t try 
to re-invent the Wheel”. 

• The system will use a very small amount of ‘wrapper software’.  All the plotting functions, 
dialog functions, etc., will be programmed in the WIN32 API.  The reason for this is because the 
WIN32 API is kernel code, is well documented and NEVER CHANGES from one version of 
Windows to the next.  Wrapper software is software that resides outside of the Windows NT OS, 
and is subject to constant revision from one software version of Windows to the next, which 
means a high maintenance situation.  Another reason is it means a small foot print in terms of 
memory, which means faster execution times.  When ‘wrapper software’ is used to build a 
windows application, one gets a lot of code linked in that is never used. 

• All ‘tree’ code generated will be generated with C++ constructors with operator ‘new’, and once 
the code has been executed, will be deleted with C++ operator ‘delete.  This code deletion or 
memory releasing is only done for executable code in the main section.  Subroutine code and 
global variables have to stick around until the shell script is finished executing, at which point, 
all the code and variables are released to the OS with C++ operator ‘delete’. 

• A given subroutine function can have the same name but have difference prototypes, depending 
on return type, as long as each prototype has the same number of input parameters.  These 
prototypes will be found in the Function Reference. 

• The Smith Chart design tool will be driven by mouse and keyboard input along with dialog box 
presentations for parameter input.  The tool will generate shell script code which is complied and 
executed, which means that the design secession can be re-run and modified at a later date.  For 
this tool, we require system parameters such as line widths, line color, etc., to be set at the 
system level. 
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 Yacc/Lex Technology 
 

The compiler was written from scratch using a C++ version of YACC and LEX.  YACC is a special tool 
to write a compiler while LEX is a lexical analyzer, and returns tokens to the YACC system.  After 
completing both files (*.y and *.l), the files are compiled with a YACC/LEX C++ compiler to generate 
C++ code, which is the compiler C++ code to be compiled and linked to the other compiled C++ files in 
this system.  If the YACC/LEX compiler detects a shift/reduce error, then no output is generated, and one 
has to fix the YACC code.  A shift /reduce error means there’s a hole in the logic, i.e., the compiler 
detects a branch in the specification that allows for two of more paths to be taken, and each one is correct.  
This means the intended code cannot be generated correctly.  Needless to say, for a compiler to generate 
the intended code correctly for the specifications as specified above, there’s many illegal combinations 
when mixing the different variable types as well as the other specifications.  In essence, the compiler is a 
complex piece of logic, and the interpreter to execute the ‘tree’ code is even more complex.   

 

 System Requirements 
 
Slide-RuleTM  for Microsoft® Windows is a 32-bit NT program and requires a PC-compatible system with 
a processor capable of running Microsoft Windows in 386-enhanced mode.  You should have 20 
megabytes of additional hard disk storage to install and run this software.  We also suggest that you run 
your monitor under Windows in its native resolution to get the full detail of plotted output.  This 
SOFTWARE runs on Windows Xp, Windows Vista, Windows 7 (64-bit version), Windows 8, and 
Windows 10. 
 

References  
 

[1]  Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition, Prentice-
Hall, 1988, 1978. 

[2]  Tony Mason and Doug Brown. lex & yacc, O’Reilly & Associates, Inc., 1990. 
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 Chapter 2 – A Short Tutorial 
 

 Introduction 
 
This Chapter provides a quick start, and step-by-step tutorials that takes you through several examples.  
This is a fast run through to give a brief overview of the Software.  Later chapters will describe in detail 
or by examples the capabilities of this Software. 

 

 To Install the Software 
 
Double click on file Slide-Rule Setup on the CD disk.  Follow the directions as presented.  At this point, 
we recommend that you jump ahead to Chapter 3 and read the first two topics to get an overview of the 
system, before starting the Quick Start section. 
 

 Quick Start 
 
Having installed the software, double click on the Slide-Rule icon.  Then click on the Shell/Execute 
Script File… menu tile and observe a dialog procedure to select a shell script file.  Navigate to the plots 
sub-directory, and then double click on the symbols shell script file.  Note that the basic display changes 
to Slide Rule Shell and that the cursor changes to an hour glass display.  In a (very) short time you should 
notice that your monitor is being drawn with a 2D view of the various values for the Incomplete Beta 
function.  When the drawing is complete, please note that the hour glass cursor changes to the normal 
arrow cursor.  Referring to the block diagram of Figure 3.1, we note that we selected a shell script file 
(i.e., code) to be input into the Shell Script Compiler/Interpreter, with the resultant plotted output to the 
display monitor.  Now pull down the File menu.  This selection allows the user to do the following. 
 

•    Exit the shell by selecting the first tile or depressing the Alt+F4 ‘hot’ keys. 
•    Output the current selected plot window to your favorite printer for a permanent hard copy record. 
•    Select and/or setup a printer for hard copy output. 
•    Select the page layout for printer output. 
•    Generate an extended metafile output for picture import into a word processor such as Word for 

Windows. 
•    Display the version number by clicking on the About Tile. 

 
Now, select the Exit procedure with your mouse or depress the Alt+F4 combo to get back to the main 
window.  Please note that the Alt+F4 combo is the universal terminate combination to terminate any 
program within the Slide-Rule program or the Windows operating system. 
 
Having done this, you should now see on the bottom of the screen the Hot Key Bar as shown below, 
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Figure 2.1 
 

Please note that the hot keys are in red.  Note that the F9 hotkey for a Command Prompt.  Now depress 
the function key F10.  You should see the symbols.txt shell script come up in a custom windows type 
editor program.  This allows you to quickly edit the shell script. Now, exit the editor (Alt+F4), and 
depress the F12 function key.  This should bring up the symbols.prn file.  The F12 hotkey is wired to the 
Windows program WordPad to display printed output from Slide-Rule. This file is the standard output 
file as pertains to the printf and Print statement as described in Chapter 3.  Exit this program (Alt+F4) and 
depress the F11 function key.  This will immediately begin execution of the symbols.txt file again.  Note 
that at this point while observing the plotted output, that the F10 and F12 hot keys are wired to the 
Custom Editor (for editing the shell script input file), and the WordPad program for displaying the printed 
output file.  At this point, terminate the shell (Alt+F4), and click on the Shell/Execute Script File… 
menu tiles on the top menu bar.  You should be in the plots directory.  Navigate to the digitalf sub-
directory and double click on the butter or select and depress the enter key.  At this point, the system is 
back in the shell script execution program, but executing a different shell script.  Right away you should 
see a pop up dialog box.  Now, imagining that this is your simulation, and we look at the plotted data and 
decide that we want to terminate the shell script.  Click on the Cancel button and observe that were in the 
Custom Editor for this shell script.  Note the pause(“Magnitude dB Display”); statement after the pCRT 
function call (at line 119).  Depress the F12 function key to look at the butter.prn output file.  Terminate 
this display (Alt+F4), and depress the F11 function key to re-execute this shell script.   Again notice the 
pop up menu as before.  This time, just hit the Enter key to continue on with the execution of this 
particular shell script.  Note that during execution, we observe different plot windows being displayed by 
how the Caption Bar changes. 
 
Now, pull down the Windows bar and you should see a menu selection.  Note that this particular shell 
script has seven plot windows which are displayed on the Menu-bar after the Windows Tile.  Now, 
depress the Tab key (or Shift+Tab keys) to cycle through the seven plots. Now, depress the F12 hotkey 
and note that WordPad comes up and displays the butter.prn output file for this particular shell script.  
This allows one to examine the standard output while in the shell.  When you’re done viewing the 
butter.prn file, terminate with the Alt+F4 combo. 
 
Now, pull down the Windows menu and select the Cascade selection.  Note that all of the plotting 
windows are displayed in a reduced cascade format.  Again go the Windows menu and select the Tile 
selection.  Note how all seven on the plots are displayed in a tile format. You can display these seven 
windows in a number of reduced formats as displayed under the Windows Tile.  Now try printing a 
couple of these windows.  Use the Printer Setup under the File menu to select or setup your printer.  Try 
printing one window in portrait mode, and another in landscape mode (Ctrl+P).  Note that under the File 
Menu, that the printer you’re hooked up with is displayed (as INFO). 
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 Demo Files 
 

Note from Figure 2.1, that after the Help Tile, there exist several tiles, namely Dialogs, Plotting, 
FilterDesign, Math, DiffEQU, SpecAnalysis, Special, ControlSystems, AdaptiveFilter, Matrix/Vector, 
RFmicro, and FEC/OFDM  These tiles are generated from a user menu file (Demos.mnu) during startup 
as will be described in Chapter 7.  Using your mouse, you can select a given demo file under a menu-tile 
with your mouse to execute.  This demo system (269 shell scripts), allows  one to quickly determine the 
capability of this SOFTWARE package.  Note:  If one depresses the Ctrl+F11 keys after the shell file 
runs (and plot(s) displayed), there is an info display on some of these files. 

 

 File  New…File… 
 
Under the File Menu tile, the New… File… dialog procedure allows the user to start a new shell script 
file.    This dialog procedure is shown below.  The user should navigate to the sub-directory where the 
new shell script is to be stored. 
  

 
 

Figure 2.3 
 

The user just fills in the file name in the File name entry dialog box entry.  The extension ‘.txt’ is not 
needed as the SOFTWARE will fill it in for you.  Note that new files cannot be created in the root 
directory ( c:\SlideRule), else a warning message.  Note that when the new file is displayed in the custom 
editor, that the user can depress the F10 function key, to select a file that he wants to grab some lines of 
code from.  This will be explained in detail in Custom Editor as described in Chapter 5. 
 

 (INFO) Script Directory = ( … ) 
 
Under the File Menu tile, this entry displays the current sub-directory.  This entry should always 
be checked when the user is designing digital filters under the Filter tile on the main menu, since 
shell script files (*.txt), print file files (*.prn), coefficients files (*.fir, *.iir, *.itp), and coefficient 
generation files (*.out) will be stored in that sub-directory.  This also holds true if the user is 
using the Smith Chart tool for microwave transistor amplifier analysis and design.  The user 
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should always check this tile to determine the current sub-directory.  Note, if not the correct sub-
directory, go to the Change Directory… tile. 
 

 Change Directory… 
 
If not in the root directory (c:\SlideRule), navigate to that directory.  Then navigate to the 
directory of choice, and select any file in the directory, and note the following message. 
     

Shell Script Path Directory is 
    C:\SideRule\”...”  
 
 

 File  New…Folder… 
 
Under the File Menu tile, the New… Folder… dialog procedure allows the user to start a new folder for 
storing their shell script files.   It is recommended that user NOT create sub-directories more that one 
level deep from the main directory (c:\SlideRule), since the File Find… procedure only searches for a file 
1 directory down from the root directory.  This dialog procedure is shown below. 
 
 

 
 
 Figure 2.4 
 

 File Find File… 
 
Under the File Menu tile, the Find File… dialog procedure allows the user to find a file ONE directory 
down from the root directory (c:\SlideRule).  This dialog procedure is shown below.  Note that the 
extension for shell script file is txt. 
 

 
 

 Figure 2.5 
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 Config – Print Line Count 
 
Under the Config Menu tile, the Print Line Count… dialog procedure allows the user to set the 
maximum print output line count, before the shell is terminated.  This prevents the user’s disk from being 
overrun should the user get into an infinite loop that contains a print type statement.  This dialog 
procedure is shown below.  Note that if one gets in an infinite loop, hit Ctrl+Alt+Del, and terminate 
program sigshellp.exe under the process tab in the Windows Task Manager. 
 

 
 

Figure 2.6 

 Config – Print() Threshold 
 
Under the Config Menu tile, the Print() Threshold… dialog procedure allows the user to set the absolute 
value for elements printed with the internal function Print(…).   This function is used to print matrices, 
vectors, or arrays, and entry elements.  Entries with absolute values less then this threshold are printed as 
a zero.   A more through discussion of this function can be found in Chapter 3.  This dialog procedure is 
shown below. 
 

 
 
 Figure 2.7 

 

 Config – Include Path 
 
Under the Config Menu tile, the Include Path… dialog procedure allows the user to set directory paths 
where user subroutines are stored.  When the #include directive is used to load user subroutine code, the 
software first looks in the current directory, then searches the directories that are defined in this 
specification.  A more through discussion of the include directive can be found in Chapter 3.    This dialog 
procedure is shown below.  It is recommended that the user store all of their shell scripts including 
subroutines that are loaded with the include directive in the same sub-directory, in which case this 
procedure will not be needed. 
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Figure 2.8 
 

 Config – User Menu Selection… 
 
A through discussion of the User Menus Selection.… dialog procedure can be found in Chapter 3. 
 

 Config – Config Display YES/NO 
 
Because of the many different display resolutions and monitor physical sizes, the Slide-Rule 
graphic might not appeal to the user.  To change, first move the graphic if desired by grabbing 
the Caption Bar and moving your mouse.  Then resize if desired by grabbing a corner.  Then 
check the Display YES/NO tile under the Config tile.  After terminating SlideRule and restarting, 
note that the program graphic comes up in the same position and size as before. 
 

Config – Interrupt on Overflow Yes/NO 
 
When the Slide-Rule program is executed by double clicking on the Slide-Rule graphic (on one’s desk-
top), the floating point overflow interrupt condition is ignored.  However, by clicking on the Interrupt on 
Overflow Yes/No tile, then this interrupt becomes enabled.  Refer to Arithmetic Conditions in Chapter 3. 
 

Config – Interrupt on Division by Zero Yes/NO 
 
When the Slide-Rule program is executed by double clicking on the Slide-Rule graphic (on one’s desk-
top), the floating point division interrupt condition is enabled.  However, by clicking on the Interrupt on 
Division by zero Yes/No tile, then this interrupt becomes disabled.  Refer to Arithmetic Conditions in 
Chapter 3. 
 

 Config – Print Un-Referenced Variables  YES/NO 
 

Checking this tile with your mouse will cause all un-referenced variables in the shell script to be printed 
out at the end of the run on the print file (<*.prn), except those in code that has been compiled with the 
#include directive.  This feature allows one to cleanup some un-necessary clutter after a given shell script 
has been checked out.  Un-check this feature if one desires not to use this feature. 
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 Config – User Name Bold YES/NO 
 
Under the Menu tile, the User name Bold YES/NO tile allows the user to have their name on the Slide-
Rule graphic either in bold or regular displayed output.  For eastern languages such as Chinese, Japanese, 
Korean, etc., the regular output allows more detail in the complex character symbols generated.  By 
selecting this tile, the user can switch back and forth. 

 

 Config – Smith Chart Parameters 
 
The entries under this tile allow the adjusting of parameters in the Smith Chart design tool.  The entries 
are as follows: 
 

• Smith Chart Line or Symbol Size… 
• VSWR Circle… 
• Circuit Q Contour… 
• Constant Gain Circle… 
• Stability Circles… 
• Radial Line… 
• Noise Circle… 
• Impedance Point… 
• Admittance Point… 

• Smith Chart Line or Symbol Color… 
• VSWR Circle… 
• Circuit Q Contour… 
• Constant Gain Circle… 
• Stability Circles… 
• Conj Match Circle… 
• Radial Line… 
• Noise Circle… 
• Impedance Point… 
• Admittance Point… 

• Smith Chart Curve Fit Tolerance… 
• Impedance Match Data ON Impedance Plots NO/YES 
• Delta Imag Data ON Impedance Plots NO/YES 
 

 Filter 
 
The entries under this tile allow the user to design digital filters as explained in Chapter 8.  
 

 Shell 
 
The entries under this tile are as follows: 
 

• Execute Script File… 
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This tile entry allows the user to navigate to any directory (under the root directory), select 
any shell script file (*.txt), and execute it by double clicking on it or selecting it and entering 
the Enter key. 

• Open Script File… 
This tile entry allows the user to navigate to any directory, select any shell script file (*.txt), 
and by double clicking on it or selecting it and entering the Enter key, launch the file into the 
custom editor as described in Chapter 5. 

• Open Script File(HOT BAR) F11 
If a given shell script file is on the Hot Bar with F11 in red, then by depressing function key 
F11, the file will be launched into to shell script compiler/interpreter for execution. 

• Edit Script File(HOT BAR) f10 
If a given shell script file is on the Hot Bar with F10 in red, then by depressing function key 
F10, the file will be launched into the custom editor for editing. 
 

 Help 
 
The entries under this tile are as follows: 
 

• Function Reference F7 
This entry take one to the Functions Reference menu (similar to that show in Appendix A), 
whereby the user can look up a given function in terms of prototype specification; a 
description of input and output parameters; and some documentation and references as 
necessary. 

• GUI Reference F8 
This tile is a description of the menu items on the task bar. 

• README… 
Displays any pertinent info on the current release of the software.  

• T Order… 
Transfers to WEB Site 

• About Slide-Rule 
Displays the current version number and a copyright notice. 
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 Chapter 3 – The Shell Script Grammar 
 

 Introduction 
 

As stated previously, the Shell Script language has the look and feel of the ever popular C programming 
language, but in a reduced form, i.e., we only use a subset of the ANSI C standard to keep things simple 
and straight forward, and also to add efficiency to the Compiler/Interpreter.  In addition, we add the types 
of vector and matrix (both in real and complex form), as objects implemented in the C++ programming 
language style.  The result is that we have a shell script language with a low level type C grammar, as 
well as a higher level system using vector and matrix objects.  In addition, since the shell script grammar 
is similar to the C programming language, it makes it must easier for the engineer to learn this software 
system since C is ubiquitous throughout much of industry and academia.   
 
Referring to the block diagram of the system in Figure 3.1, we note that every shell script is a file stored 
on disk before it is executed, and that the execution of this file is first compiled into tree code, and then 
the tree code is executed in an interpretive manner.  This allows the user to quickly change a given 
statement or statements and rerun the shell script without having to compile and link the code as in a 
normal computing situation. If the user calls many of the supplied internal functions, the user can get 
quite acceptable performance since the time consuming procedures are not running in an interpretive 
fashion.   
 
Since the shell script language is similar in nature to the C and C++ programming languages, this chapter 
is organized on a per topic basis assuming the reader has prior experience with C and/or C++.  If that is 
the case, you can quickly scan this chapter to learn the similarities, the differences, and the do’s and 
don’ts of programming shell scripts in Slide-Rule.  For programming at a higher level using the 
matrix/vector types, the user is referred to Chapter 4,  Matrix/Vector Grammar, and Chapter 14,  
Matrix/Vector Computations. This chapter follows with the basic description of the shell script language. 

 

The Shell Script Language and Grammar 
 
The Shell Script language is heavily typed, i.e., all variables must be defined before using in statements 
or expressions, and every variable must have an assigned type as will be described latter under 
Assignment Types.  Once a given variable is assigned a given type, it cannot be dynamical changed to a 
different type, nor can it be re-defined as a different type.  User written subroutines must have a prototype 
specification both in the input parameters and the return type.  This also applies to the internal functions 
that come with this software.  We note that several of the mathematical functions as well as other 
functions are overloaded, i.e., they have more than one prototype specification.  The correct module to 
compute the intended result is determined at compile time, and the user, by matching the prototype 
specification exactly (both in input parameter type and number of parameters), will be guaranteed to call 
the correct module.  As in C and C++, the Shell Script is statically typed. 
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Code Layout 
 
The Compiler/Interpreter is a single pass system.  This necessitates that we order the code as shown in 
Figure 3.2.  The first block of code (1) should consist of defined symbolic constants.  The next block (2) 
should include global data definition statements if these variables are to be referenced by any of the user’s 
subroutines.  Normally these statements wouldn’t be placed here since in general it’s not a good idea to 
have subroutines referencing global data.  Next (3) comes the user subroutines either coded in the shell 
script file (to be run) or included with the #include directive.  Block (4) includes the global variables that 
the main program references.  We note that in C and C++, that all variables referenced by the software 
must first be defined, else an error condition.  Since the Compiler/Interpreter is single pass, we note that 
these variables in block (4) cannot be referenced by the user supplied subroutines in block (3).  Finally, 
block (5) is the main code, and is the starting point of program execution.  Refer to Figure 3.3 for an 
example code segment. 
 
 
 

Script
 File

(Code)

Shell Script
Complier

Interpreter

Data files
on Disk

New Data files
on Disk

Plots
from

Plotting
Statements

MetaFiles
from Plots

(*.wnf)

Printout
of Plots

Printed report
from printf or

Print statements
on file *.prn

 
 
 

     Figure 3.1 - Block Diagram 
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(1) Constant Statements

(2) Global Statements

(3) Include Files

(4) Global Statements

(5) Main Code

 
      Figure 3.2 - Code layout 

 
BlockCode 

1 const int GSIZE = 61; 

2 float zarray[GSIZE][GSIZE]; 

3 #include "hillsub.txt" 
#include "hillsubs.txt” 

4 float xmax,xmin,ymax,ymin,zmax,zmin; 
int i,j,k; 
int type; 
int fd; 

5 hills(GSIZE,GSIZE,xmin,xmax,ymin,ymax,zmin,zmax); 
printf("xmin = %f\n", xmin); 
printf("xmax = %f\n", xmax); 
printf("ymin = %f\n", ymin); 
print("ymax = %f\n", ymax); 
printf("zmin = %f\n", zmin); 
printf("zmax = %f\n", zmax); 
openPlot("HILLS.TXT Example"); 
colorBar(10); 
surwir3D(1); 
conlab3D(8,1,1); 
colorB(207,207,207); 
xLabel("RANGE"); 
yLabel("CROSS RANGE",1); 
zLabel("RESPONSE"); 
camloc3D(266.7,140.0,25.0); 
confil3D(45); 
surfil3D(45); 
opts3D(0,0,0); 
consurf3D(3,GSIZE,GSIZE,zarray,xmin,xmax,ymin,ymax);
pCRT(); 

 
                Figure 3.3   Example Code Layout 
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 White Space 
 
White space may be used as necessary to make the shell script more readable.  Please note that tabs (‘\t’), 
spaces (‘ ‘), and new line (‘\n’) characters count as white space when the shell script is parsed into lexical 
elements.  As an example,  
 
 float xy123, z1,z2; 
and 
 float xy123,z1, z2; 
 
produce the same results; 
 

 Comments 
 
Comments come in two flavors.  The first begins with the “/*” characters and ends with the “*/” 
characters.  Please note that this type of comment may not be nested.  The second type of comment begins 
with the characters “//” and extends to the end of the line, i.e., a string of ASCII characters terminated by 
a new line character (‘\n’).    Examples of comments follow: 

  
  /* This is a Comment */ 

 float xy123, z1,z2;    //  This is another comment 
 
 

 Pseudo Ops #define, #ifdef, #else, #ifndef, and #endif 
 
The pseudo ops as listed above are implemented for conditional code inclusion as standard in C-type 
code.  The #if expression, and #elif expression are not implemented because the #define variable, #ifdef 
varaible, #ifndef variable, #else, and #endif pseudo ops meet the requirement for conditional code 
inclusion and a related goal of keeping the shell script language as simple and straight forward as 
possible.  An example of the #ifdef pseudo op for code inclusion is as follows: 

 
#define DEBUG 
 . 
 . 
 . 
#ifdef DEBUG 
printf("xmin = %f\n", xmin); 
printf("xmax = %f\n", xmax); 
#endif 

 
If the #define DEBUG was not included as shown above, then the two printf statements would not be 
complied and executed.  However, if the #define DEBUG was not included, and if the user instead used 
the #ifndef DEBUG pseudo op, then the two printf statements would be complied and executed.  Please 
note that the #define pseudo op is not a macro for text replacement as in a standard C-compiler that uses a 
pre-processor, but can only be used as described above for code inclusion.  Also, the #endif pseudo op 
must be included for each #ifdef or #ifndef, else a compiler error is generated.  Note that #ifdef/#endif 
statements may be nested to a level of 2. 
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 Keywords 

The keywords include all of the internal function names as listed in Appendix A, and the list as given 
below.  These keywords are reserved, and may be only used for their intended purpose.  Please note that 
all keywords and variable names are case sensitive.  Keyword identifiers follow: 

 
#define #ifdef #ifndef #endif #else 
int long float double  complex char  
matrix vector matcmplx veccmplx void   
const pi pi2 EPS MAX MIN   
Print echof printf Sizeof rowSize colSize  
if else for continue while do  
break switch case default return sprintf  
open close read write skip 
Print PrintX PrintO PrintB new delete  

Please note that if you use a keyword unintentionally, you will normally receive the error message Syntax 
error, and be transferred to the custom editor at the offending line of code.  If your scratching your head 
on this, just enter the keyboard combo Ctrl+F12 with the cursor on the offending line of code to get a 
pop-up dialog box listing all the reserved words on that line of code. 
 

 Variable Names 
 
All variables used throughout the shell script must first have been defined before they are referenced.  As 
in the C-programming language, every variable must start with one of the 26 letters of the alphabet (either 
upper or lower case) or the underscore ( _ ).  The rest of the name may include the alphabet characters 
(upper or lower case), the ten digits 0 through 9, and the under score character.  Variable names may be 
up to 32 characters in length. 
 

 Uniqueness and Scope 
 
Although variable identifier names are arbitrary as defined within the rules above, duplicate names are 
illegal if they share the same scope.  For all user written subroutines, the variables used in the calling 
sequence and those locally defined share only local scope, i.e., all other subroutines and the main code 
and its variables (as located in blocks (4) & (5) as shown in Figures 3.2 and 3.3) have no access to these 
variables.  Also, as defined above, all user written subroutines have no access to global variables which 
are located in block (4) as shown in Figures 3.2 and 3.3.  Users should note that if global variables are 
defined in block (2), that user written subroutines cannot use those variable names as local variables, 
since those subroutines have access to those global variables.  However, as described previously, it’s not a 
good programming practice to have subroutines accessing global variables.  If using the #include 
directive to include a subroutine code, and the file contains global variables, then those global variables 
are automatically converted to static variables, i.e., only the subroutine(s) within the include file have 
access to these variables.  This methodology makes for efficient and faster execution. 

 

 Integer Constants 
 
Integer constants can be decimal, octal, or hexadecimal, and follow the normal naming conventions.  
Please note that all integer constants are signed 32-bit quantities within the shell.  Unsigned quantities 
don’t exist.  Hint! For decimal constants, don’t proceed with a zero, else the compiler will convert to an 
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octal constant.   To declare a symbolic integer constant which follows the naming conventions as 
described under Variable names, enter as in the following examples. 
 

const int  GRID_SIZE = 61; 
const long ARRAY_SIZE = GRID_SIZE * GRID_SIZE; 

 
For assignment statements, we have the following examples. 
 

isize = 1024; // set isize to 1024 decimal  
jsize = 0x400; // set jsize to 400 hexidecimal  
zsize = 01000; // set zsize to 1000 octal  

 
Note that you can use the keyword long in place of int as shown above.  This allows users who have a 
piece of C-code that they want to import into Slide-Rule to omit the task of converting all 16-bit short 
declarations to longs.  Long integers work just as good as short integers.  Note!  If you try to modify a 
variable as defined with the const directive, you will receive a run-time error. 
 

 Floating Point Constants 
 
Floating point constants include the decimal point and an optional + or - sign.  You may also include 
scientific notation such as: 
 

12.345E-09      or      456.234e+23 
 
Please note that all constants are stored internally as 64-bit IEEE 754 floating point numbers. To declare a 
symbolic floating constant which follows the naming conventions as described under Variable names, 
enter as in the following example. 
 

const float  PI = 3.14159; 
const double PI2 = 2. * PI; 

 
For assignment statements, we have the following examples. 
 

xvar = 3.14159/2.; 
yvar = 2.63456E-9; 
Zvar = 1; 

 
Note that you can use the keyword double in place of float as shown above for the same reasons as 
described above under Integer Constants. 
 

 Complex Constants 
 
Complex constants consist of two floating point values, i.e., a real part and an imaginary part.  They are 
stored internally as two 64-bit IEEE 754 floating point numbers.  The letter j is used to define the 
imaginary part of the complex number.  Examples of use are as follows: 
 

Z1 = 3.5 + 3j; 
Zvar = -1j; 
Zvar = 1 + 1j; 

 
Note in the second and third examples that we need to include the number 1, else the compiler thinks the 
second part is the variable j, and not the imaginary part of a complex number. So for the imaginary part 
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of a complex number, the letter j must always be proceeded by an integer or float point literal.  As 
an example, in defining a complex vector with the statement, 
 

veccmplx J[] = { -2+2*sqrt(3)j, -2–2*sqrt(3)j, -6 }; 
 
the user will receive a run-time error.  The correct way to write this statement is, 
 

veccmplx J[] = { -2 + 2j*sqrt(3), -2 -2j*sqrt(3), -6 }; 
 
This can also be written as: 
 

veccmplx  J; 
 
J = { -2 + 2j*sqrt(3), -2 -2j*sqrt(3), -6 } 
 

 Character Literals 
 
A Character literal may be defined by using single quotation marks around a single character.  The 
permissible characters are a-zA-Z0-9.  An example might be, 
 
 char type; 
 
 type = ‘F’; 
 
This type of variable is handy to use in switch statements, as they allow the user to remember a given case 
by the letter.  This variable type is compiled as an integer, but may be printed in the printf function by 
using the %c format specification.  An example might be, 
 

matrix M1 [][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 
        10, 11, 12, 13, 14, 15, 16 }; 
float   ftemp; 
char   type; 
 
switch (type) { 
    case ‘F’: 
 ftemp = normM(M1, 'F'); printf("frobenius norm = %g\n", ftemp); 
 break; 
    case ‘I’: 
 ftemp = normM(M1, 'I'); printf("Infinity norm = %g\n", ftemp); 
 break; 
    case ‘1’: 
 ftemp = normM(M1C, '1'); printf("norm-1 = %g\n", ftemp); 
 break; 
} 

 

 Character Strings 
 
Character strings may be pre-defined in a statement to be used in a printf statement or as an argument to a 
function.  An example of a character string definition might be, 
 

char  *label[] =  {“Magnitude in dB\n” }; 
char  *labels[] =  {“Magnitude in dB\n”, “Magnitude\n” }; 
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You may not use variables defined with the keyword char in arithmetic operations.  The keyword char is 
only used for character string definition.  To use the first string (label) definition in a printf statement, the 
code looks like, 
 
 printf(“%s\n”, label[0]); 
 printf(“%s\n”, labels[0]); 
 printf(“%s\n”, labels[1]); 
 
Note that the literals 0 and 1 could have been variables such as i, j.  We can print these strings in a user 
defined subroutine as follows: 
 
 void abc(char * label) 
 { 
  printf(label[0]); 
 } 
 abc(labels[0]); 
 abc(labels[1]); 
 
The indexing within the subroutine is necessary since de-referencing a pointer is not allowed within the 
shell.  We note that in ANSI C that the following statements are legal, however, we don’t allow them in 
the Shell because it becomes confusing to the novice user. 
 

char pattern[] = “bold”; 
char pattern[] = { ‘b’, ‘o’, ‘l’, ‘d’ }; 

 

  Assignment Types 
 
Besides the char type as described above, there exist additional types as defined below: 
 
 
 float signed 64-bit double precision value 
 int signed 32 bit integer 
 double signed 64-bit double precision value 
 long signed 32 bit integer 
 complex two signed doubles to form a complex number 
 vector a collection of floats (64-bit) to form a vector type 
 matrix a two dimensional collection of floats to form a matrix type 
 veccmplx a complex vector type 
 matcmplx a complex matrix type 
 
Please note that variables of type int, float, complex, matrix, vector, matcmplx, and veccmplx can also be 
defined as single or double dimensioned arrays. Some examples might be: 
 

float    df[144]; 
int      idif[64]; 
complex  Z0[10], Z1[10]; 
double   zarray[NGRID][NGRID]; 
vector   V[10]; 
matrix   A[10][10]; 
int      i, j, k; 
float    range, cross_range; 

 
For the types, float (double),  int (long), and complex, you can mix these in arithmetic operations that 
make since.  Normal conversion of one type to another type follows the normal conventions.  For 
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example, a literal or variable of type float that is an R-value will be converted to an integer in an 
assignment statement before storing into a L-value of type int.  To convert the real portion of a complex to 
float, use the function real(...), else you will receive a run time error.  Refer to Chapter 4 for mixing 
matrix/vector variable types. 
 

 Dynamic Allocation using operators new and delete 
 
For the types of int (long), float (double), and complex, once a variable of these types has been defined, 
the user can dynamically reallocate the size of the array by using operator new.  An example follows: 
 

int len, rows, cols, idif[2]; 
float *dif; 
 
len = 100; rows = 10; cols = 5; 
idif = new int[len];  dif = new float[rows][cols]; 

 
Note that the variable array dif is initialized to a length of 2 to be considered an array.  Also, the 
expression in brackets must evaluate to a type of int.  You can also dynamically delete storage for these 
types by using operator delete.  An example follows: 
 

delete [] idif; 
 

Operators new and delete operate on variable types of int (long), float (double), complex, matrix, vector, 
matcmplx, and veccmplx. For types of int, float, and long using operator delete, the storage size returned 
equals two, while for matrix, vector, matcmplx, and veccmplx, the returned storage size is one. 
  
 
The Assignment Operator 
 
The = (equal sign) separates a variable assignment ( L-value) from a R-value.  It can also be used to 
initialize arrays of type int, float, and complex, as well as the types of vector, matrix, veccmplx, and 
matcmplx.  Examples of array initialization follow: 
 

int   jtable[] = { 1, 2, 6, 8, 3, 4 }; 
float  xy[]  = {0, 23.3, 9, 45.6, 67.3, 90. }; 
complex C0[] = { 0, 1 + 2.3j, 3.3j, 2 + 2j, 6 }; 
vector vec1[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; 
veccmplx C0[] = { 1+2j, 2-4j, 2.2- 3j }; 
matrix mat1[][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; 
matcmplx mat2[][2] = { 1+2j, 2-1.1j, 3-4j, 5+2.1j }; 
int xyz = 56; 
float Y13 = 23.435, Z12 = 124.876; 
 

The above initializations should be self explanatory, but note that the initialization is done at compile 
time, and not at run time.    Please note there’s no need to state the size of the array as the shell will do 
this for you.  In the case of a two dimensional matrix or a double dimensioned  array of type int (long), 
float (double),  or complex,  the number given in the above example is the column dimension, and the 
array/matrix is initialized on a row basis, i.e., the sequential data in brackets ( {...} ) fills the rows in a 
sequential manner.  Note that for double dimensioned arrays, that if a value is put into the first square 
brackets, then a run time error will be generated.  Also, for double dimensioned array types, if the number 
of elements in the {...} isn’t equal to an integral number of columns, then a run-time error will be 
generated. You can also initialize an array with other pre-defined arrays, variables, and function 
statements.  Some examples of this might be, 
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float K = 5; 
float a = 1.5; 
vector num[] = { 0, 0, 1.2*K, 2.4*K*a, 1.2*K*a*a }; 
vector den[] = { .36, 1.86, 2.5+1.2*K, 1+2.4*K*a, 1.2*K*a*a }; 
 
int L, M = 40; 
float alpha; 
vector z29[29];  // vector z29 consists of 29 zero’s 
vector Hrs[] = { 1, 1, 1, 1, 1, .5, z29, .5, 1, 1, 1, 1 }; 
vector HrsOpt[] = { 1, 1, 1, 1, 1, .39, z29, .39, 1, 1, 1, 1 }; 

 alpha = (M-1)/2.; 
 k1 = vecGen(0, 1, (M-1)/2); k2 = vecGen((M-1)/2+1, 1, M-1); 
 vector angH[] = { -alpha*(2*pi)/M*k1, alpha*(2*pi)/M*(M-k2) }; 
 
Note that the above initializations can be written only once.  Writing a given variable a second time with 
the same syntax as shown above, will generate a complier error.  Note that in Chapter 4, it will be shown 
how to redefine a vector/matrix or complex vector/matrix sequence. 
 

 Arithmetic operator’s 
 
The following arithmetic operators can be used on type’s int, float, and complex in expression statements.  
These operators can also be used on matrix/vectors types, and will be described in Chapter 4, The Matrix 
Vector Grammar.  Operations can be freely mixed among these types that make sense.  The list is as 
follows: 
 
 +   addition 
 -    subtraction 
 *   multiplication 
 /    division 
 ^   power operator (for types float/double and complex only!!) 
 +=  plus equals  (assignment statement) 
 -=   minus equals  (assignment statement) 
 *=  times equals  (assignment statement) 
 /=   divided by equals  (assignment statement) 
 ^=   power operator equals (for types float/double and complex only!!) 
 
Note the following statements: 
 

float a; 
 
a = 1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1)))))); 
printf("a = %.12f\n", a); 

 
produces the following result: 
 

a = 1.000000000000 
 

The reason for this is that an integer divided by a larger integer always produces a zero.  Now if we 
change the statement to: 
 

a = 1+1/(1+1/(1+1/(1+1/(1+1/(1+1/(1.)))))); 
printf("a = %.12f\n", a); 
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we get the following result: 
 

a = 1.615384615385 
 

Here we note that the expression is evaluated from right to left, and an integer value of 2 divided by a 
floating point value of 1 always produces a floating point value.  In the end we wind up adding an integer 
value of 1 to a floating point value ~= 7/13.  Note if we change the statements to: 
 

a = 1+1./(1+1/(1+1/(1+1/(1+1/(1+1/(1)))))); 
printf("a = %.12f\n", a); 

 
we get the following result: 
 

a = 1.500000000000 
 
This little demonstration points out that one needs to be careful when using literal integers when in reality 
we want a floating result which can always be obtained by adding the decimal point, thus specifying a 
floating point literal.  As a general rule, if one of the operands is a floating point type, then you don’t 
need to add a decimal point to the literal.  An example might be, 
 
 int N = 4; 
 float J; 
 J = -(2*pi)/N; 
 
Since pi is a floating point constant, then we don’t need to add a decimal point to the integer literal 2 since 
it is automatically converted to floating point as well as the integer variable N. 
 
Note!! The power operator ^ is a short cut version of the pow function. 
 
 Var = alpha^2; 
 Var = pow(alpha, 2); 
 
The example above shows equivalent statements.  For matrix/vector operations, we use the .^ operator.  
Refer to topic in Chapter 4, The Matrix/Vector Grammar.  
 

 Logical operator’s 
 
The following logical operators can be used on types int, float, and complex in an if statement.  
Operations can be freely mixed among these types.  The list is as follows: 
 
 ==     equal to 
 >=     greater than or equal 
 <=     less than or equal 
 !=     not equal 
 >      greater than 
 <      less than 
 &&   logical AND catenation of two expressions 
 ||       logical OR catenation of two expressions 
 !       logical NOT of an expression 

 

 Bitwise operator’s 
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The following bitwise operators can be used ONLY on variables of type int/long.  The list is as follows:  
An exception for operators ^ and ^=  on types float/double and complex (refer to Arithmetic operator’s 
topic).  
 
 &     bitwise and of two expressions 
 |       bitwise or of two expressions 
 ^      bitwise xor of two expressions 
 %     modulo of two expressions 
 >>     shift right 
 <<     shift left  
 ~      one’s complement of an expression (unary) 
 &=   bitwise and (assignment statement) 
 |=     bitwise or (assignment statement) 
 ^=    bitwise xor (assignment statement) 
 %=   modulo (assignment statement) 
 >>=   shift right (assignment statement) 
 <<=   shift left (assignment statement)  

 
Note that for the shift operators, that these are arithmetic shifts.  To implement as unsigned shifts, just use 
the lower bits of the integer variables you define. 

 

 Increment/Decrement operator 
 
The operator’s ++ and -- can be used in the update statement of a for loop, and also to increment or 
decrement a variable by 1. As an example, 
 
 int  i, j; 
 
 for(i = 0; i < 25; i++) {  /* this use is AOK */ 
        . 
        . 
       j++;                 /* this use is AOK */ 
 } 
 
Note that the Shell doesn’t have pointer variables as in the C-programming language, so that when you 
use these operators, you are always either incrementing or decrementing a variable by 1.  You may use 
these operators on floating point variables, but the preferred method is as follows: 
 
 fcount += 1; 
  

The Sizeof, rowSize, colSize , rowLen, & colLen functions 
 
The Sizeof function is used to get the size of an array of type’s int (long), float (double), or complex.  And 
example might be, 
 
 int   j; 
 float buffer[300]; 
 
 for(j = 0; j < Sizeof(buffer); j++) 
 { 
     . 
     . 
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 } 
 
Note that this construct differs from the C-programming language sizeof operator in that it returns the 
number of elements in the array and not the number of bytes.  This function may also be used on type’s 
matrix, vector, matcmplx, and veccmplx.  Note that for type’s matrix and matcmplx, that the return value 
is the number of elements in the matrix.  You can also use the rowSize and colSize functions on doubled 
dimensioned arrays of type’s int (long), float (double), and complex, as well as matrix and matcmplx 
types, to get the row or column dimension.  Refer to the Help Menu/Functions Reference/Grammar and 
Control Logic.  An example follows. 
 
 matrix M1[10][300]; 
 int  M, N; 
 
 M = rowSize(M1); N = colSize(M1); 
 Print(M); Print(N); 
 
 ****************************************** 
 
 M = 10 
 N = 300 
 
To get the row or column length, use the rowLen and colLen  functions. Refer to the Help 
Menu/Functions Reference/Grammar and Control Logic.   

 
 

 The include directive 
 
The include directive is used to load symbolic constants or subroutine code into a shell script.  Because 
the shell is a single pass parser, these statements should be in block (3) of the shell script file as shown in 
Figures 3.2 and 3.3. An example might be, 
 
 #include “hillsubs.txt” 
 #include “hillssub.txt” 
 
When first developing user written subroutines, include them in the main shell file (block 3) until no 
compile errors are generated.  If you do get a compile error in a subroutine that was included by this 
directive, then the shell is terminated, and the subroutine is displayed in the Custom Editor with the cursor 
highlighted at the offending line of code.  Note that the first two statements of hillsubs.txt (which resides 
in sub-directory subs) are: 
 

#ifndef _HILLSUBS 
#define _HILLSUBS 

 
And the last is: 
 

#endif 
 
This precludes the code being included twice with a given shell script, and is a standard C-type 
programming methodology.  The include directive can consist of including a single file containing one of 
more subroutines, or one can include a file which consists of a collection of include directives.  An 
example might be: 
 
 #include “control.h” 
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This file control.h might look like: 
 
 #include "residueS.txt" 

#include "stepTF.txt" 
#include "stepSS.txt" 
#include "impulseTF.txt" 
#include "impulseSS.txt" 
#include "bodeTF.txt" 
#include "TFtoPZ.txt" 
#include "SStoTF.txt" 
#include "TFtoSS.txt" 
#include "PZtoTF.txt" 
#include "PZtoSS.txt" 
#include "bodeSS.txt" 
#include "SStoPZ.txt" 
#include "rlocusTF.txt" 
#include "rlocusSS.txt" 
#include "parallelTF.txt" 
#include "seriesTF.txt" 
#include "feedbackTF.txt" 
#include "nyquistTF.txt" 
#include "nyquistSS.txt" 
#include "secondOrdSys.txt" 
#include "LTIsysTF.txt" 
#include "LTIsysSS.txt" 
#include "margin.txt" 
#include "nicholschart.txt" 
#include "nicholspts.txt" 
#include "groupDA.txt" 

 
Please note that the complier compiles shell script code at about 50,000+ lines per second!! 
 

 The if statement 
 
The if statement is used to control the flow of execution.  Shown below is an example of the use of an if 
statement, 
 
 if(xval <= 30.) 
 { 
       . 
       . 
 } 
 
Although not necessary, one might want to get in the habit of using the {} brackets even if you have only 
one statement between them.  Note that the following assignment statement embedded in the if statement, 
while legal in ANSI C, generates an error in the shell. 
 

if(var23 = 24) { 
 . 
 . 
 . 
} 

  
The user meant to write if(var23 == 24).  Even the most experienced programmer makes this mistake.  
This can be a very hard error to find, so we don’t allow it in the shell.  Another example that generates a 
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run-time error is an assignment statements within an expression, as assignment statements embedded 
within an expression are not allowed within the shell. 
 
 if(Gp == (tmp = ellipticC(pi/2, k1))); 

 

 The else statement 
 
The else statement is used in conjunction with the if statement.  An example might be, 
 
 float xy; 
 
 xy = 24.0; 
 if(xy < 22.) 
      printf(“xy < 22.0\n”); 
 else if(xy <23.) 
      printf(“xy < 23.0\n”); 
 else if(xy < 24.) 
      printf(“xy < 24.0\n”); 
 else 
      printf(“xy >= 24.0\n”); 
 
Will produce the result to the print file (*.prn) of 

 
xy >= 24.0 

 
 

 The compact if then else expression 
 
The if then else conditional such as  

 
 if(a > b) 
      z = a; 
 else 
      z = b; 

 
can be written in a compact way as: 

 
 expr1 ? expr2 : expr3 

 
where expression expr1 is evaluated first.  If it is non-zero (true), then expression expr2 is evaluated.  
Otherwise expr3 is evaluated.  Thus to set z to the maximum of a or b (as above), or to print out the 
maximum of a or b, we have: 
 

z = (a > b) ? a : b; printf(“Maximum of a or b is %d\n”, z); 
printf(“Maximum of a or b is %d\n”, (a > b) ? a : b); 

 

 The for statement 
 
The for statement is used to execute program loops, and is a generalization of the while statement.  
Within the parentheses, there are three parts, separated by semicolons.  The first part, the initialization 
statement, is executed before the loop proper is entered, and allows multiple assignment statements 
separated by commas. The second part is the test that controls whether the loop proper will be executed.  
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If the condition is false, then the loop is terminated, else it is executed.  The third part is executed after the 
loop proper is executed and before the second part is executed to re-evaluate the condition of the loop.   
The third part also allows for multiple assignment statements separated by commas. Note that the first 
and/or third parts in the parenthesis are optional (not the two semi-colons however).  Note that the curly 
brackets (optional) are used to enclose more than one statement within the loop proper.  These loops may 
be compounded as in the following example. 
 
 int   i,j,k; 
 float array[25][50]; 
 float x, y, del, theta; 
 
 k = 0; 
 theta = 0; 
 del = 2*pi/2500.; 
 for(i = 0; i < 50; i++) 
 { 
     for(j = 0; j < 50; j++) 
     { 
               array[i][j] = sqrt(x*x + y*y); 
      theta += del; 
      x = cos(theta); 
      y = sin(theta); 
            . 
     } 
     k += 1; 
 } 
 
Please note that in the above example that a run time error will be generated when index i exceeds its 
array storage (i = 25).  Also note that the for instruction statement could have been written as: 
 

for(i = 0, k = 0; i < 50; i++, k += 1) 
 
thus eliminating two statement lines. 

 

 The while statement 
 
The while statement can also be used to execute loops.  The condition statement between parentheses is 
evaluated first, and if true, the loop is executed.  This condition is then re-evaluated, and the loop 
continues to execute until the condition statement becomes false.  Note that the curly brackets (optional) 
are used to enclose more than one statement within the loop proper.  The following is a typical example. 
 
 int   i,j,k; 
 
 k = 0; 
 while ( k < 50) 
 { 
       . 
       . 
       . 
       k += 1; // expression between parens cannot be assignment 
 } 
 

 The do while statement 
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The do while statement can also be used to execute loops.  This loop will always execute at least once 
before the condition statement is evaluated to determine whether the loop should be re-executed.  This 
loop continues until the condition statement becomes false or the loop is terminated with the break 
statement. Note that the curly brackets are used to enclose more than one statement within the loop 
proper.  The following is a typical example. 
 
 int    i, j, k; 
 
 k = 0; 
 do 
 { 
      . 
      . 
      . 
      k += 1; 
 } while(k < 50); 
 

 The break statement 
 
The break statement allows one to exit a for loop, a while loop, a do while, or a switch statement before 
the main loop terminates.  An example might be as follows, 
 
 while(1) 
 { 
         . 
         . 
         if(x >= 100.0) break; 
 } 

 

 The continue statement 
 
The continue statement allows one to continue in a  for loop, a while loop, or a do while loop, and not 
execute the additional statements in the rest of the loop.  An example could be as follows, 
 

for(j = 0; j < 100; j++) {  
 . 
 . 
 if(x >= 100.0) continue; 
 . // additional statements 
 . 
} 

 

 The switch statement 
 
The switch statement allows one to implement a multi-path if/then else conditional in a compact manner.  
The switch conditional expression must be of integer type, and the values in the case statements must be 
integer literals.  The default statement in the switch can be in any place and not necessarily at the bottom 
of the switch.  An example of a switch statement follows: 

 
 ival = 5; 
 . 
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 . 
 switch(ival) 
 {  
 case 0: 
 case 1: 
 case 2: 
 case 3: 
 case 4: 
     printf(“Got here for cases 0 -> 4\n”); 
     break; 
 case 5: 
     printf(“Got here for case 5\n”); 
     break; 
 case 6: 
     printf(“Got here for case 6\n”); 
     break; 
 default: 
     printf(“Got here for all other value of ival\n”); 
     break; 
 } 

  
Note that the break statement causes an immediate exit from the switch, else we just fall through to the 
next case.  Although the break statement is logically unnecessary for the default case as shown above, 
add it in case some day another case gets added at the end. 

 
 

 The printf statement 
 
The printf statement follows the normal C-standards as described in a C-programming manual.  An 
example might be,  
 
 int    i; 
 float  Ax[100]; 
 
 printf(“Ax[%02ld] = %.4f\n“, i, Ax[i]); 
 
Note that this internally supplied function is the same as the standard printf found in the C-programming 
language.  The format specifiers that this printf function supports include the following format 
specifications along with modifiers, 
 

%d, %f, %g, %G, %e, %E, %x, %X, %s, %c 
 
To print a complex number , we have, 
 

printf(“Z0 = %f %+fj\n”, real(z0), imag(z0) ); 
 
To print an integer with a field width of 5 with blank fill, we have, 
 

printf(“I55 = %5d\n”, I55); 
 
To print an integer with a field width of 5 with zero fill, we have, 
 

printf(“I55 = %05d\n”, I55); 
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To print a floating point number with a fractional precession of 12, we have, 
 

printf(“Range = %.12f\n”, Range); 
 
To print a floating point number with a fractional precession of 12 in scientific notation, we have, 
 

printf(“Range = %.12e\n”, Range); 
 
Please note that the l(el) modifier is optional in the printf function for integer arguments because the type 
int and long are one and the same in the shell, and there’s no need to generate an error if a user omits the l 
(el) modifier.  Each conversion specification begins with the character % and ends with the conversion 
character (d,f,g,G,e,E,x,X,or s).  Between the % and the conversion character there may be, in order: 

 
 Flags (in any order) which modify the specification: 

  -, which specifies left adjustment of the converted argument in its filed  
 +, which specifies that the number will always be printed with a sign 

  space, if the first character is not a sign, a space will be prefixed 
  0, for numeric conversions, specifies padding with leading zeros. 

  
A number specifying a minimum field width.  The converted argument will be printed in a field at 
least this wide, and wider if necessary.  If the converted argument has fewer characters than the field 
width it will be padded on the left (or right, if left adjustment has been requested) to make up the field 
width.  The padding character is normally a space, but 0 if the zero padding flag is present. 

 
A period which separates the field width from the precision. 

 
A number, the precision that specifies the maximum number of characters to be printed from a string, 
or the number of digits to be printed after the decimal point for e, E, or f conversions, or the number of 
significant digits for g or G conversions, or the number of digits to be printed for an integer 

 
Conversions for printf 

 
Character Argument Type Converted To: 

  
 d int/long; signed decimal. 
 o int/long; unsigned octal (without a leading zero). 
 x, X int/long; hexadecimal (without a leading 0x or 0X) using abcdef or ABCDEF 
 s char; characters form a character array of type char. 
 c char; a single variable of type char  (output equals ASCII character). 
  the precision.  The default precision is 6.  A precision of 0 suppresses the decimal point. 
 e, E float/double; decimal of the form [-]m.dddddde+xx or [-]m.ddddddE+xx, where the d’s  
  is specified by the precision. The default precision is 6.  A precision of 0 suppresses the  
  decimal point. 
 g, G float/double; %e or %E is used if the exponent is less than -4 or greater than or equal  
  to the precision, otherwise %f is used.  Trailing zeros and a trailing decimal point are  
  not printed. 

 

 The sprintf function 
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The sprintf function has the same functionally of the printf function as defined above, except that 
formatted output is stored in a used defined character buffer.  An example might be: 
 

char buf[61]; 
 
sprintf(buf,”var23 = %d\n”, var23); 

  

 The Print , PrintX, PrintO, and PrintB Functions 
 
The internal function Print is provided to allow the user to easily print matrix or vector types.  You can 
also print single or double dimensioned arrays or variables of type int, float, and complex as well as single 
variables.   The following is an example piece of code and the corresponding printed output result.  Note 
that the PrintX, PrintO, and PrintB functions allow for printing variables or arrays of type int (long) in 
hex, octal, or binary format. 

 
 matcmplx mat1[][2] = { -3+2j, -7+9j, 1-8j, 5-4j }; 
 matrix mat2[][3] = { 1, 4, 7, 2, 5, 8, 3, 6, 9 }; 
 veccmplx vec1[] = { -1+1j, -1-1j }; 
 vector vec2[] = { 4, 5, 6, 7, 8 }; 
 float abc[][2] = { 1, 2, 3, 4 }; 
 float F12 = 55.746358923; 
 
 Print(mat1); 
 Print(mat2); 
 Print(vec1); 
 Print(vec2); 
 Print(abc); 
 Print(F12); 

 
produces the output: 
 

matrix(cmplx) -> mat1(2,2) 
[row 
0000          -3         +2j          -7         +9j 
0001           1         -8j           5         -4j 
] 
matrix -> mat2(3,3) 
[row 
0000           1           4           7 
0001           2           5           8 
0002           3           6           9 
] 
vector(cmplx) -> vec1(2) 
[col 
0000          -1         +1j          -1         -1j 
] 
vector -> vec2(5) 
[col 
0000           4           5           6           7           8 
] 
array(real) -> abc(5) 
[ 
          1           2           3           4           5 
] 
F12 = 55.746358923 
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Note that under the Menu tile Config/Print() Threshold…, that the absolute value of elements less than 
the value under this dialog procedure, are printed as zero.  The default value is 2.204e-14, which is 
roughly 100 times the EPS value of ~2.204e-16.  Note!  For single variables of type float, the format is 
%.16g, while for complex it’s %.16g %+.16gj. Also, when printing the *.prn file using WordPad, if 
the matrix or vector doesn’t fit in portrait mode, switch to landscape followed by cntl+a, and then change 
the font size to 9 .  It turns out that Wordpad cannot be initialized as such. 
  

 User written Subroutines 
 
The user supplied subroutines allow the user to write procedure’s that can be called at various places 
within the shell script.  As described earlier, subroutines must precede the main body of the shell script 
statements since the shell script is a single pass parser.  Each subroutine must begin with a type of void, 
int, float, complex, matrix, vector, matcmplx, or veccmplx, and the subroutine can only return one of these 
types.  The type specifier is then followed by the name of the subroutine.  A left and right parenthesis 
must then follow with an optional parameter list which must include type specifiers.  The main body of 
statements then follow, which must be enclosed in angle brackets.  A return statement should be the last 
statement of the procedure.  If you have a void procedure, declare the function of type void and omit the 
return statement (unless you have an early exit).  An example could be as follows: 
 

int Cal_Range(float x, int ix, float *buffer, float& yscale) 
{ 
 int  i,j,k; 
 float  ftemp; 
 
 for(j = 0; j < ix, j++) 
 { 
       .  
       .  
       yscale = ...; 
 } 
 k = 0; 
 if(ftemp > 50.) k = 1; 
 return(k); 
} 

 
Based upon the example, it should be fairly obvious on how to proceed in the writing of subroutines.  
Please note that for variable yscale, that what ever we pass as an argument (4th parameter), that that 
variable will be modified at global scope since that variable is being passed by reference.  For variable x 
in the above example (1st parameter), what ever we pass will not be modified at global scope, but only 
locally within the scope of the function since we are passing the variable by value.  Please note that local 
variables can have the same names as global variables (since they are in a different scope), and do not 
modify the variable (with the same name) at the global level. Also, we can pass literals as arguments to 
parameter variables x and ix in the above example.  An example of this might be, 
 

int   sFlag; 
float yBuffer[1000], xScale; 
 
sFlag = cal_Range(25, 100, yBuffer, xScale);   

 
Note that for passing double dimensioned arrays of type int/long, float/double or complex, the prototype 
can have the following different formats as shown in the following examples. 

 
int putValues(float * array){ ... } 
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int putValues(float array[][10]){ ... } 
 

For single dimensioned arrays, we can have. 
 
int putValues(float * array){ ... } 
int putValues(float array[]){ ... } 
 

Note that in the above example, where we specify that array has 10 columns, that the value is irrelevant, 
since in Slide-Rule the dimensions of the array are automatically carried into the subroutine.  This is also 
true for types of matrix, vector, matcmplx, and veccmplx.  Note that you can use functions Sizeof (to 
return the size in type elements of an array), or rowSize/colSize (to return the row/column dimension of a 
double dimensioned array or matrix).  Refer to the Help Menu.   
 
Note!   Local arrays within the subroutine are initially initialized to zero when compiled.  However, on 
subsequent calls to the subroutine, these local variables won’t be initialized.  So if you expect these 
variables to be zero upon entry, you must initialize these local variables each and every time you call the 
subroutine.  Note that single variables are not initialized, and if used in an expression without first being 
set to some value, then a run time error will be generated.  If set to a value (as shown below for variable 
Nx), then this variable is set only at compile time, and won’t be reset on subsequent calls to the 
subroutine.   
  
An example might be: 
  

vector ABC(matrix A, matrix B) 
{ 

matrix y[10, 10]; 
int  i, N, Nx = 12;; 

 
 y = zerosM(10, 10); // matrix y must initially be ALL zeros 
   . 
   . 
   . 
 return(y[:0]); // return first column of matrix y 
} 

  
Note!  For arrays and matrix/vector types, if these variable names, as passed to the subroutine as 
parameters, are modified within the subroutine, then they are MODIFIED at global scope. 
 
Note that if matrices A and B are modified, then they are modified at global scope.  If this is a problem, 
then you might change to the following: 
 

 vector ABC(matrix A, vector B,) 
{ 

matrix y; 
matrix  a, b, c, d; 
int  i, N; 
 

 y = zerosM(10, 10); // matrix y must initially be ALL zeros 
 a = A; b = B;   // create local copies 
   . 
   . 
   . 
 return(y[:0]); 
} 
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Note that if you passing a vector to a subroutine which is a row or column of a matrix, then the row or 
column of the matrix is not modified at global scope, since the vector is passed as a temporary vector.  
An example might be: 
 

matrix matB; 
vector vecR; 
 
vecR = xyz(matB[j]); // pass row j of matB to subroutine xyz 

 
 
Note!!  Locally defined variables within a subroutine are stored as static variables, and not stored on a 
volatile stack as in most C environments. This allows the user to define constants within the subroutine 
proper which are local to that particular routine. 
 
Note!!  Since the subroutine code in the shell script grammar doesn't store input parameters on a local 
stack, then by definition, subroutines in Slide-Rule are not recursive.  It was done this way to gain speed.  
Subroutines or functions are written to modularize the code and make the given analysis procedure more 
readable. 
 
For the novice user.  Although a given subroutine can only return one value, note that all of the 
arguments passed to the subroutine can be modified at global scope.  

• Use the & operator on non-array variables to modify that variable at global scope, else it won’t be 
modified at global scope. All arrays of type int, float, and complex, if modified in a subroutine, 
will be modified at global scope. 

• All objects of type matrix, vector, matcmplx, and veccmplx, if modified within the subroutine, 
will be modified at global scope.  To preclude this, copy to different variables as defined within 
the subroutine. An example was shown above in subroutine ABC. 

Note!! If you have a statement at the beginning of a subroutine such as: 
 
 float   var2 =  2; 
 
then don't expect var2 to be equal (=) to 2, if you modify it on a previous call.  The code segment above 
sets var2 to 2 at compile time, and not when entering the subroutine from a function call.  If you want it to 
be equal to 2, on each and every call, the code should look like this: 
 

 float   var2; 
 
 var2 = 2; 
 

Note!! At this point its best to point out that handling arrays as vectors or matrix types is the preferred 
method of programming, since we can reference elements within the vector or matrix in the same manner 
as conventional arrays, but can handle these types at a much higher level as will be described in Chapter 
4, The Matrix/Vector Grammar. Note that he shell doesn’t allow the return of array types of int, float, or 
complex.  The shell was designed this way, to encourage the user to use the matrix/vector types. 

 

 Argument Overloading for Functions Calls 
 
For internal and shell script functions, the following is a list of the legal argument types for the 
parameter types as specified in the prototype statement. 
  

• int  literal int, literal float, integer variable, floating variable 
• float literal int, literal float, integer variable, floating variable 
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• complex literal  int, literal float, integer variable, floating variable, complex literal,  
  complex variable 

• float * single or double dimensioned floating array 
• complex * single or double dimensioned complex array 
• matrix matrix 
• vector vector 
• matcmplx matcmplx 
• veccmplx veccmplx 

 
Note!!  Expressions by definition are temporary, and all temporary expressions that are passed in as 
arguments, will not be modified at global scope. As an example, if you create a vector (or complex 
vector) by referencing a row or column of a matrix (or complex matrix) in a function call, then the row or 
column of the matrix (or complex matrix), will not be modified at global scope. 

 
 

The return statement 
 
The return statement allows the user to return a type of int, float, complex, matrix, vector, matcmplx, or 
veccmplx from a user written function.  For a void procedure, a return statement without a value allows an 
early exit from the procedure. 
 

Initialization of variables 
 
All global array variables of all types have there storage initialized to zero when declared.  For array 
types, you can access elements values in the array without first setting these array elements to some value.  
The value you access of course will be zero.  For non-array types, you must first set the variable to some 
value in an assignment statement, else you will receive a run time error, and be transferred to the Custom 
Editor (as described in Chapter 5), with the Editor positioned on the offending line of code.  An example 
follows: 

 
float x,y,z; 

 
y = 23.45; 
z = sqrt(x*x + y*y); 

 
Produces the following error message:  

 
(line 4) Variable(x) not previously set 

 

Arithmetic Conditions 
 
The arithmetic conditions that produce a run time error include the following: 
 

· Integer division by zero. 
· Invalid floating point operation (0/0, 0*INF) 
· Floating point division by zero (x/0.0) 
· Floating point total loss of precision. 
· Float point stack overflow. 
 Any arithmetic operation involving a NaN. 
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Note that a floating point overflow condition goes to +INF or -INF, and that a non-zero numerator 
divided by zero goes to either +INF or -INF depending on the sign of the numerator term.  Also note that 
integers always wrap on an overflow condition.  Underflow conditions are ignored. 
 
Other conditions that that produce a run time error include argument DOMAIN errors such as, 

 
sqrt(-5) 
log10(-1) 
log(-20) 
 

If one has a vector or matrix variable, and one or more terms are zero, just add EPS 
(2.2204460492503131e-16) to the vector variable. 

 
Note!!  When one double clicks on the Slide-Rule graphic, the following conditions as stated above are in 
effect.  However, one can enable an interrupt (under the Config tile) on a floating point overflow 
condition while the Slide-Rule graphic program is in effect (running).  The same holds true for division by 
zero.  Note however, that operation of 0/0 or 0*INF will always give an invalid floating point message 
with an interrupt. 
 

 The File open/close and read/write Functions 
 
Included in the internal functions are the I/O functions open/close and read/write which allows a user to 
open up to 20 (disk) files for reading and/or writing.  Since input/output is normally covered in a C-
manual (such as The C Programming Language by Kernighan/Ritchie), we include these function 
specifications here for completeness.  The descriptions can also be found under the Help Menu. 

 
 Module open 

 
 Function Open a file for reading and or writing. 
 
 Syntax  int  open(char *filename, char  *descriptor); 
   where, 
   filename =  ASCII file including path if necessary 
   descriptor = ASCII file descriptor 
    = “r”, Open for reading only 

   = “w”, Create for writing.  If file already exists, it will be    
               overwritten. 

                = “b”, binary mode(note! this flag used in conjunction with “r”    
                          or “w” such as “rb” or “wb”).   

                = “r+”, Open an existing file for updating(reading and writing). 
                = “w+”, Create a new file for updating (reading and writing). 

 
   Returns a file descriptor used for a file specification in routines read,  
                                       write, and close. 

  
  
 Module close 

   
 Function Closes an opened file. 

 
 Syntax  void  close( int  fileID); 
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   where, 
    fileID = integer file descriptor returned from file open call. 
  
 
 Module read, readM, readV 
  
 Function Read in data from an opened file. 
 
 Syntax  Real Version: 
   int  read(float *buffer, int count, int type, int  fileID); 
 
   Integer Version: 
   int  read(int *buffer, int count, int type, int  fileID); 
 
   Complex Version: 
   int  read(complex *buffer, int count, int type, int  fileID); 
 
   where, 
    buffer =  array to read into 
    count = maximum number of elements in buffer to read into 
    type = type of input data in file 
            =  1,  signed character data 
             =  2,  signed short(16-bits) integer data 
            =  3,  signed long(32-bit) integer data 
            =  4,  floating point data (32 bits, float type) 
             =  5,  floating point data (64 bits, double type) 
            =  6,  ASCII data in streams format 
    fileID = integer file descriptor returned from file open call. 
 
   Matrix Version: 
   int  readM(matrix A, int rows, int cols, int type, int  fileID); 
   int  readM(matcmplx B, int rows, int cols, int type, int  fileID); 
   
   where, 
       A = real matrix(can be a NULL matrix) 
       B = complex matrix(input data is real complex, real complex , ...) 
       rows = row dimension of matrix 
       cols = column dimension of matrix 
 
   Vector Version: 
   int  readV(vector A, int length, int type, int  fileID); 
   int  readV(veccmplx B, int length, int type, int  fileID); 
   
   where, 
       A = real vector(can be a NULL matrix) 
       B = complex vector(input data is real , real j , ...) 
       length = dimension of vector 
 
 Note!  Each version returns number of type elements read, and ALWAYS store the return 

value to a variable, else a run type error!! 
 
  
 Module write 
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 Function Writes data to an opened file. 
 
 Syntax  Real Versions: 
   int  write(float *buffer, int count, int type, int  fileID); 
   int  write(vector vec, int count, int type, int  fileID); 
   int  write(matrix mat, int count, int type, int  fileID); 
 
   Complex Versions: 
   int  write(complex *buffer, int count, int type, int  fileID); 
   int  write(veccmplx vec, int count, int type, int  fileID); 
   int  write(matcmplx mat, int count, int type, int  fileID); 
   where, 
    buffer =  array to write from 
    vec =  vector array to write from 
    mat =  matrix array to write from 
            =  1,  signed character data 
           =  2,  signed short(16-bits) integer data 
            = 3,  signed long(32-bit) integer data 
            =  4,  floating point data (32 bits, float type) 
           =  5,  floating point data (64 bits, double type) 
 
            =  6,  ASCII data in streams format 
    fileID = integer file descriptor returned from file open call. 
   
   Returns: 
    number of elements written. 

  



52 



53  

   Chapter 4 - The Matrix/Vector Grammar 

  

 Introduction 
 

 
This chapter presents the basic Matrix/Vectors Grammar similar to the Shell Script Grammar as presented 
in Chapter 3.  Following that, examples of basic Matrix/Vector operations will be presented to acquaint the 
user with these functions.  We note that in Chapter 3, the basic grammar is similar to the ANSI C language, 
but in a reduced form, i.e., we only use a subset of the ANSI C standard to keep things simple and straight 
forward.  We add the types of vector and matrix (both in real and complex form), as objects, with the result 
is that we have a shell script language with a low level type C grammar, as well as a higher level system 
using vector and matrix objects. In Chapter 14, Matrix/Vector Computations, we will discuss and show 
examples of such topics as solving for the eigenvalues and eigenvectors of a matrix system;  solving a 
system of linear equations;  etc... 
 

 Matrix/Vector operations with scalars 
 
For expressions we can add (+), subtract (-), multiply (*), or divide(/) a real or complex matrix or vector by 
a real or complex scalar (either a variable or literal).  The operation is done on an element by element basis, 
and the resulting matrix or vector is real if both operands are real, else complex if the left operand is 
complex.  Note when using scalars, that for the multiply operation, we use the * operator, and not .*, which 
is reserved for matrix/vector operations on an element by element basis.  Note that for assignment 
operations ( = ), that the left and right matrix or vectors can be of different sizes, since the left operand is 
replaced.   Note that the left matrix or vector can be complex, while the right expression can be either real 
or complex.   
Assume the following variables;  Amat, a real matrix;  Bmat, a real matrix (with row/column dimensions 
the same as Amat);  Avec, a real vector;  Bvec; a real vector (with length the same as Avec);  Cmat, a 
complex matrix; ;  Dmat, a complex matrix  (with row/column dimensions the same as Cmat);  Cvec, a 
complex vector;  Dvec, a complex vector (with length the same as Cvec);  Aconst, a real scalar (either a 
variable or a real literal);  Cconst, a complex scalar (either a variable or a complex literal). The following 
are permissible scalar operations on these variables.  Note that these operations are done on an element by 
element basis. 
 

 
  Amat = Bmat + Aconst;   Avec = Bvec + Aconst; 
  Amat = Bmat - Aconst;   Avec = Bvec - Aconst; 
  Amat = Bmat * Aconst;   Avec = Bvec * Aconst; 
  Amat = Bmat / Aconst;   Avec = Bvec / Aconst; 
  Amat += Aconst;    Avec += Aconst; 
  Amat -= Aconst;    Avec -= Aconst; 
  Amat *= Aconst;   Avec *= Aconst; 
  Amat /= Aconst;    Avec /= Aconst; 
  Amat =  Aconst;   Avec =  Aconst; 
  Cmat += Aconst;    Cvec += Aconst; 
  Cmat -= Aconst;    Cvec -= Aconst; 
  Cmat *= Aconst;    Cvec *= Aconst; 
  Cmat /= Aconst;    Cvec /= Aconst; 
  Cmat =  Aconst;   Cvec =  Aconst; 
  Cmat = Dmat + Cconst;   Cvec = Dvec + Cconst; 
  Cmat = Dmat - Cconst;   Cvec = Dvec - Cconst; 
  Cmat = Dmat * Cconst;  Cvec = Dvec * Cconst; 
  Cmat = Dmat / Cconst;   Cvec = Dvec / Cconst; 
  Cmat = Amat + Cconst;   Cvec = Avec + Cconst; 
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  Cmat = Amat - Cconst;   Cvec = Avec - Cconst; 
  Cmat = Amat * Cconst;  Cvec = Avec * Cconst; 
  Cmat = Amat / Cconst;   Cvec = Avec / Cconst; 
  Cmat += Cconst;    Cvec += Cconst; 
  Cmat -= Cconst;    Cvec -= Cconst; 
  Cmat *= Cconst;    Cvec *= Cconst; 

  Cmat /= Cconst;    Cvec /= Cconst;. 
  Cmat =  Cconst;   Cvec =  Cconst; 

 
 matrix Amat[2][3];  // definition of Amat as a 2x4 real matrix 
     // and it’s initialized to zero at compile time 

matrix Xmat;   // Xmat, a 1x1 real matrix set to zero 
 matrix Bmat[2][3];  // Bmat initialized to zero at compile time 
 matcmplx Cmat[2][2]; // Cmat initialized to zero at compile time 
 
 Amat += 1;   // AOK as defined above, matrix Amat(2x3) all 1’s 
 Amat = Bmat +5;  // AOK as defined above, matrix Amat(2x3) all 5’s 
 Cmat += 2 -3j; Print(Cmat); Print(Amat); 
 Cmat = Amat -2; Print(Cmat); 

Bmat = Amat * 2; 
************************************************************************** 
matrix(cmplx) -> Cmat(2,2) 
[row 
0000           2         -3j           2         -3j 
0001           2         -3j           2         -3j 
] 
matrix -> Amat(2,3) 
[row 
0000           5           5           5 
0001           5           5           5 
] 
matrix(cmplx) -> Cmat(2,3) 
[row 
0000           3         +0j           3         +0j           3         +0j 
0001           3         +0j           3         +0j           3         +0j 
] 
matrix -> Bmat(2,3) 
[row 
0000          10          10          10 
0001          10          10          10 
] 
************************************************************************* 

  

 Matrix/Vector copy operations 
 
Matrix/Vector copy operations are performed with simple assignment statements.  The receiving matrix 
(or vector) can be a NULL matrix (or vector), or it can have been previously defined with a different size 
then the new size.  If not a NULL matrix (or vector), the internal storage is deleted, and then created with 
the new size.  The variable (name) must have been previously defined, and the receiving matrix/vector 
must be of the same type ( matrix/vector) as the R operand. The L operand can be complex while the R 
operand can be real).  The following are the possible combinations of this operation. 
 

Avec = Bvec;  // Avec a real vector, Bvec a real vector 
Cvec = Bvec;   // Cvec a complex vector, Bvec a real vector 
Cvec = Dvec  // Cvec a complex vector, Dvec a complex vector 
Amat = Bmat;   // Amat a real matrix, Bmat a real matrix 
Cmat = Bmat;   // Cmat a complex matrix, Bmat a real matrix 
Cmat = Dmat;   // Cmat a complex matrix, Dmat a complex matrix 
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Assuming the definitions as previously defined, we can store a real matrix/vector to a complex 
matrix/vector as the imaginary part by using the cmplx function.  For a real matrix/vector to a complex 
matrix vector as the imaginary part , we have,  
 

   Cmat = cmplx(0, Amat);  Cvec = cmplx(0, Avec); 
 
This causes the real portion or the complex portion of Cmat and Cvec to be all zeros.  Note that the zero 
literal can be any integer, or real number. 

 
 Or for both real and complex portions, where Amat, Bmat, Avec, and Bvec are real. 

  
   Cmat = cmplx(Amat, Bmat);  Cvec = cmplx(Avec, Bvec); 
 

Note for these last statements, that matrix and vector arguments must be of the same size and be real.  
Also note that arithmetic operations can take place on the operands in parenthesis. An example might be, 

 
xbbR = 2*exp(cmplx(0,-2*pi*(fc+Dfc)*t-phic)).*xR; 

 or, 
xbbR = 2*exp(-2j*pi*(fc+Dfc)*t-phic).*xR; 

 
To store the real or imaginary portion of a complex matrix/vector to a real  matrix/vector, we use the real 
and imag functions.  The following are the combinations of these operations. 
 

   Amat = real(Cmat);   Avec = real(Cvec); 
 Bmat = imag(Cmat);         Bvec = imag(Cvec); 
  Amat = real(Bmat);         // generates run type error 
 Amat = imag(Bmat);         // generates run type error 
 Avec = real(Bvec);         // generates run type error 
 Avec = imag(Bvec);         // generates run type error 
 

 Matrix/Vector operations, element by element 
 
Assume the variables as defined above. Note that the R expression for 2 or more variables for the = 
operand, they must be of the same size (row/column/length dimensions) and type (matrix or 
vectors).  For the +=, -=,  .*=, and /= operands, the R and L operands must have the same dimensions and 
be of the same type if the L operand is real.  For mixed operands, i.e., real and complex for the R 
expression, the receiving matrix/vector must be of type complex (matcmplx/veccmplx).  Note also, that 
the R expression can be real and the L-variable can be complex. We note that for element by element 
matrix/vector multiplication, we use the .* (dot star) operator, and not the * operator which is 
reserved for matrix product operations. Note that for the other operators (+, -, and /), that element by 
element operations are implied (since theirs no other option in matrix operations except on an element by 
element basis). The following are permissible operations on these variables on an element by element 
basis. 

 
  Amat = Bmat + Bmat2;   Avec = Bvec + Bvec2; 
  Amat = Bmat - Bmat2;   Avec = Bvec - Bvec2; 
  Amat = Bmat .* Bmat2;   Avec = Bvec .* Bvec2; 
  Amat = Bmat / Bmat2;   Avec = Bvec / Bvec2; 
  Amat += Bmat;    Avec += Bvec; 
  Amat -= Bmat;    Avec -= Bvec; 
  Amat .*= Bmat;    Avec .*= Bvec; 
  Amat /= Bmat;    Avec /= Bvec; 
 
  Cmat = Bmat + Dmat2;   Cvec = Bvec + Dvec2; 
  Cmat = Bmat - Dmat2;   Cvec = Bvec - Dvec2; 
  Cmat = Bmat .* Dmat2;   Cvec = Bvec .* Dvec2; 
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  Cmat = Bmat / Dmat2;   Cvec = Bvec / Dvec2; 
  Cmat += Bmat;    Cvec += Bvec; 
  Cmat -= Bmat;    Cvec -= Bvec; 
  Cmat .*= Bmat;    Cvec .*= Bvec; 
  Cmat /= Bmat;    Cvec /= Bvec; 
  Cmat = Dmat + Dmat2;   Cvec = Dvec + Dvec2; 
  Cmat = Dmat - Dmat2;   Cvec = Dvec - Dvec2; 
  Cmat = Dmat .* Dmat2;   Cvec = Dvec .* Dvec2; 
  Cmat = Dmat / Dmat2;   Cvec = Dvec / Dvec2; 
  Cmat += Dmat2;    Cvec += Dvec2; 
  Cmat -= Dmat2;    Cvec -= Dvec2; 
  Cmat .*= Dmat2;    Cvec .*= Dvec2; 
  Cmat /= Dmat2;    Cvec /= Dvec2; 
 
 

 The Matrix/Vector power operator .^ 
 
The operator  ^ in ANSI C is reserved for a bitwise exclusive or between two integer types and this is true 
is Slide-Rule..  However, we define the operator .^ to be an element by element power operator 
between matrix and vector types for the following expressions.  Assume the variables as defined above. 
Note that matrix variables must be of the same size (row/column dimensions) as well as vector variables 
(of equal length).    Note that when the operator is used between two matrices or two vectors, that the 
second matrix/vector becomes the exponent value on an element by element basis.  This also applies 
when a variable or literal is employed, i.e., the right operand always assumes the exponent value, while 
the left operand assumes the base operand.  Note! (float Avar; complex Dvar; ) 
 

  Amat = Bmat .^ Bmat2;   Avec = Bvec .^ Bvec2; 
  Cmat = Bmat .^ Bmat2;   Cvec = Bvec .^ Bvec2; 
  Cmat = Dmat .^ Dmat2;   Cvec = Dvec .^ Dvec2; 
  Amat = Avar .^ Bmat;   Avec = Bvar .^ Bvec; 
  Amat = Bmat .^ Avar;   Avec = Bvec .^ Bvar; 
  Cmat = Avar .^ Bmat;   Cvec = Bvar .^ Bvec; 
  Cmat = Bmat .^ Avar;   Cvec = Bvec .^ Bvar; 
  Cmat = Dvar .^ Dmat;   Cvec = Dvar .^ Dvec; 
  Cmat = Dmat .^ Dvar;   Cvec = Dvec .^ Dvar; 
 

Note!!  Assume the right operand is the literal 2, and the left operand is a vector. 
 
  vector  x, n; 
 
  n = vecGen(0, 1, 4); Print(n); 
  x = 2.^n; 
 

The code segment above will generate a run time error, because the 2. is returned as a token from the 
lexical analyzer as a floating point literal, so that the operator .^ becomes just ^.  The correct method 
should be, 
 

  x = (2).^n; Print(x); 
*******************************************************************  
vector -> n(5) 
[index 
0000           0           1           2           3           4 
] 
vector -> x(5) 
[index 
0000           1           2           4           8          16 
] 
*******************************************************************  
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The Matrix Product Operator * 
 
We use the * operator to perform the matrix product operation between two operands.  The resulting 
output of the expression is either a real or complex matrix.  We can mix real and complex matrix types, 
as long as the column size of the L-operand matches the row size of the R-operand.  The resulting matrix 
output is the row size of the L-operand and the column size of the R-operand. We can also use a real or 
complex vector as one (and only one) of the operands.  If used as an L-operand, the vector is converted 
(as a temp) into a row matrix, while if used as a R-operand, it is converted (as a temp) into a column 
matrix.  If both L and R operand are real, then the resulting expression is real, else complex. 
 

Amat * Bmat  // Amat a real matrix, Bmat a real matrix 
  Cmat * Bmat  // Cmat a complex matrix, Bmat a real matrix 
  Bmat * Cmat  // Bmat a real matrix Cmat a complex matrix, 

Amat * Avec  // Amat a real matrix, Avec a real vector 
Avec * Amat  // Amat a real matrix, Avec a real vector 

  Cmat * Avec  // Cmat a complex matrix, Avec a real vector 
  Avec * Cmat  // Avec a real vector, Cmat a complex matrix 
  Amat * Cvec  // Amat a real matrix, Cvec a complex vector 
  Cvec * Amat  // Cvec a complex vector, Amat a real matrix 
  Cmat * Cvec  // Cmat a complex matrix, Cvec a complex vector 
  Cvec * Cmat  // Cvec a complex vector, Cmat a complex matrix 
  Dmat * Cmat  // Dmat a complex matrix, Cmat a complex matrix 
 
 

Generating a Vector Sequence 
 
We can generate a vector sequence as shown in the following examples. 
 

vector   Avec; 
int   npts; 
 
Avec = vecGen(0, 1, 4); // start at 0, increment by 1, last element = 4  
Print(Avec); 
Avec = vecLin(-4, 0, 5); // start at -4, last value = 0, 5 elements 
Print(Avec); 
***************************************************************** 
vector -> Avec(5) 
[index 
0000           0           1           2           3           4 
] 
vector -> Avec(5) 
[index 
0000          -4          -3          -2          -1           0 
] 
 

 
 For a log sequence, we have function vecLog as described below.    
 

vector vecLog(float first,  float last); 
where, 
 first = 1st data value. 
 last = last data value 

For each decade, 75 data points are generated, 50 for the first half, and 25 points for the last.  If 
the starting value is not on a decade, the first data point is forced on a decade value.  For example 
if you specify 0.03, the first data point will be 0.01.  To get the number of data points in the 
vector returned, use the Sizeof function (npts = Sizeof(Avec); 
 
Avec = vecLog(0.03, 10); Print(Avec); 
npts = Sizeof(Avec); 
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printf("Number of data points = %d\n", npts); 
printf("First data point = %.2f\n", Avec[0]); 
printf("Lasr data point = %.2f\n", Avec[npts-1]); 
******************************************************************* 
Number of data points = 391 
First data point = 0.01 
Lasr data point = 10.00 
 

 

Defining a Vector 

 
In Chapter 3 we showed how to initialize a vector with the following type of statements,  
 

vector vec1[] = { 1, 2, 3, 4, 5, 6, 7, 8 }; 
veccmplx C0[] = { 1+2j, 2-4j, 2.2- 3j }; 
vector Hrs[]  = { 1, 1, 1, 1, 1, .5, zerosV(29), .5, 1, 1, 1, 1 }; 
vector HrsOpt[] = { 1, 1, 1, 1, 1, .39, z29, .39, 1, 1, 1, 1 }; 
 

The limitation on this type is that it is only allowed once and it’s done at compile time.  However, we can 
repeatable re-define a vector sequence with the following syntax;  Var = { …}; where Var is either of 
type vector or veccmplx, and previously defined.  An example might be, 

 
vector V1[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; 
vector V4[] = { 7, 6, 5, 4 }; 
float y = 156.78, x = 123.4; 

 
V1 = { V1, zerosV(29), y, flip(V4), x, V1, V4 }; 
 

From the above, we have, 
 

vector -> V1(59) 
[col 
0000      1      2      3      4      5      6      7      8      9     10 
0010      0      0      0      0      0      0      0      0      0      0 
0020      0      0      0      0      0      0      0      0      0      0 
0030      0      0      0      0      0      0      0      0      0 156.78 
0040      4      5      6      7  123.4      1      2      3      4      5 
0050      6      7      8      9     10      7      6      5      4 
] 

 
 The above code segment could have been coded as, 
 

vector V1; // Note that V1 has length 1 and is initialized to ZERO!! 
vector V4[] = { 7, 6, 5, 4 }; // done at compile time 
float y = 156.78, x = 123.4; // done at compile time 
 
V1 = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }; // done at run time  
V1 = { V1, zerosV(29), y, flip(V4), x, V1, V4 }; 

 
You can also define a temporary vector of an expression, by casting the expression.  The syntax is, 
 
   (vector) { expression } 
 (veccmplx) { expression } 
 
An example might be, 
 
  P0 = toeplitz2((vector){ subSV(pR, 0, 2), zerosV(N) },(vector){ pR[0], zerosV(N) });  
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where were passing two real vectors to the subroutine toeplitz2. 
 
 
The following table lists the action for types within the curly-brackets. Under Action, the type refers to 
the receiving vector.  Note that arithmetic operations of +, -, *, /, and  .* are permissible.  
 
 
Type Action 
Integer literal Allowed. 
Real literal Allowed. 
Complex literal Allowed for type veccmplx, generates run type error for type vector. 
Integer variable Allowed. 
Real variable Allowed. 
Complex variable Allowed for type veccmplx, generates run type error for type vector. 
Integer array Generates run type error. 
Real array Generates run type error. 
Complex array Generates run type error. 
Vector Allowed. 
Complex Vector Allowed for type veccmplx, generates run type error for type vector. 
Matrix If a row or column = 1, else generates run type error 
Complex Matrix Allowed for type veccmplx if row or column = 1, else run type error 
Functions Allowed if return type is allowed as listed above. 

 
 
If you need to start out with a vector that is defined, but with no elements, proceed as follows.  First 
define the vector, then set the vector to a null vector, and finally, add some elements.  An example 
follows. 
 

vector V1; // Note that V1 has length 1 and is initialized to ZERO!! 
 
 V1 = { }; // sets vector V1 to a NULL vector 
 V1 =  { V1, a, b, c, d }; 
 
Note that in the above example, that vector V1 must be set to a null vector, else the first element of V1 
will be a zero since the definition of V1 has length of 1 and is initialed to zero. 
 
   

Defining a Matrix 
 
Referring to the previous topic, we can repeatable re-define a matrix sequence with the following syntax;  
Var = { …};   where Var is either of type matrix or matcmplx, and previously defined.  An example 
might be, 

 
matrix X[][4] = { 0, 0, 1, 0, 0, 0, 0, 1, 

    -36, 36, -.6, .6, 18, -18, .3, -.3 }; 
matrix Bx[][1] = { 0, 0, 1, 0 }; 
matrix K[][4] = { 130.4444, -41.5556, 23.1, 15.4185 }; 
matrix Ka[][2] = {14.4, 0.6, 0.3, 15.7 }; 
matrix L[][2] = { 0, 0, 0, 0, 1, 0, 0, 1 }; 
matrix Yxy[][2] = { 1, 0, 0, 1 }; 
matrix Yzz[][2] = { -.6, .6, .3, -.3 }; 
// Previous statements executed during compile time 
matrix XX, YY; 
 
Print(X-Bx*K); Print(Bx*K*L); Print(zerosM(2,4)); Print(Yzz-Ka*Yxy); 



60 
XX = { X-Bx*K, Bx*K*L; zerosM(2,4), Yzz-Ka*Yxy }; Print(XX); 
YY = { X-Bx*K, Bx*K*L; zerosM(2,4), Yzz-Ka*Yxy }’; Print(YY); 
 
 

From the above, we have,  
 

X-Bx*K = matrix -> tmpMat(4,4) 
[row 
0000           0           0           1           0 
0001           0           0           0           1 
0002     -166.44      77.556       -23.7     -14.819 
0003          18         -18         0.3        -0.3 
] 
Bx*K*L = matrix -> tmpMat(4,2) 
[row 
0000           0           0 
0001           0           0 
0002        23.1      15.418 
0003           0           0 
] 
zerosM(2,4) = matrix -> tmpSym(2,4) 
[row 
0000           0           0           0           0 
0001           0           0           0           0 
] 
Yzz-Ka*Yxy = matrix -> tmpMat(2,2) 
[row 
0000         -15           0 
0001           0         -16 
] 
matrix -> XX(6,6) 
[row 
0000           0           0           1           0           0           0 
0001           0           0           0           1           0           0 
0002     -166.44      77.556       -23.7     -14.819        23.1      15.418 
0003          18         -18         0.3        -0.3           0           0 
0004           0           0           0           0         -15           0 
0005           0           0           0           0           0         -16 
] 
matrix -> YY(6,6) 
[row 
0000           0           0     -166.44          18           0           0 
0001           0           0      77.556         -18           0           0 
0002           1           0       -23.7         0.3           0           0 
0003           0           1     -14.819        -0.3           0           0 
0004           0           0        23.1           0         -15           0 
0005           0           0      15.418           0           0         -16 
] 
 

 
From the code segment above, we note use the syntax Var = (…)’; to take the transpose for matrix YY.  
Use syntax Var = (…).’ for a complex matrix to take the transpose with out taking its conjugate. 
You can also define a temporary matrix of an expression, by casting the expression.  The syntax is, 
 
   (matrix) { expression } 
 (matcmplx) { expression } 
 
Note that successive matrix variables that are separated by commas, expand the new matrix to the right, 
i.e., more columns are added.  When separated by the semi-colon operator, the new matrix is expanded by 
adding more row(s), and the column length of the matrix becomes fixed.  When new rows are added with 
the semi-colon operator, then the number of columns for the new row(s) must match the number of 
columns in the previous row(s), else a run time error is generated.  Also, when adding successive matrix 
elements with the comma operator, the number of rows of succeeding matrix variables must match the 
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preceding matrix.  The following table lists the action for types within the curly-brackets. Under Action, 
the type refers to the receiving matrix.  Note that arithmetic operations of +, -, *, /, and .* are permissible.  
 
 
Type Action 
Integer literal Allowed. 
Real literal Allowed. 
Complex literal Allowed for type matcmplx, generates run type error for type matrix. 
Integer variable Allowed. 
Real variable Allowed. 
Complex variable Allowed for type matcmplx, generates run type error for type matrix. 
Integer array Generates run type error. 
Real array Generates run type error. 
Complex array Generates run type error. 
Vector Allowed. 
Complex Vector Allowed for type matcmplx, generates run type error for type matrix. 
Matrix Allowed 
Complex Matrix Allowed for type matcmplx, generates run type error for type matrix. 
Functions Allowed if return type is allowed as list above. 

 
If you need to start out with a matrix that is defined, but with no elements, proceed as follows.  First 
define the matrix, then set the matrix to a null matrix, and finally, add some elements.  An example of 
building a table of 50 rows and 4 columns of computed values a, b, c, and d follows. 
 

matrix table;  // Note that table has dimensions of 1x1 and length 1, 
// and is initialized to ZERO!! 

 
 table = { }; // sets matrix table to a NULL matrix 
 for(i = 0; i < 50; i++) { 
   . 
   . 
  table =  { table; a, b, c, d }; 
 } 
 
Note that in the above example, that the matrix table must be the left most argument, else you will get an 
error message, and be transferred to the custom editor at the offending line of code. 
 
 

Multi-dimensional Matrix Arrays 
 

 
Multi-dimensional matrix arrays can be created by calling routine zeros3D with more than two 
arguments.  For example, 
 
 #include “matrices.h” 
 
 matrix M1, M2; 
 matcmplx M1c; 
 vector V1; 

float  ftemp; 
 
 M1 = zeros3D(4, 4, 5); 
 M1c = zeros3D(2, 2, 10); 
 
To access the kth matrix of M1, the code is as follows 
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 M2 = M1[::k]; // 0 <= k <= 4 
 
To store to  the jth matrix of M1, the code is as follows 
 
 M1[::j] = magic(4); // 0 <= j <= 4 
 
Note! To access elements (i, j) of the kth matrix, first create temporary matrix.  For example, 
 
 M2 = M1[::k]; // 0 <= k <= 4 
 V1 = M2[3];  // get 4th row in plane k of M1 
 ftemp = M2[1][2]; // get element from row 2 column 3 in plane k of M1 
 
 

Casting Operations 
 

When using both matrix and vector variables, it’s often the case that we need to transform a vector into a 
row matrix, or to transform a matrix into a vector.  We can perform these operations by performing 
casting operations.  The syntax for these operations are as follows: 

 
(vector) expression; 

  (veccmplx) expression; 
  (matrix) expression; 
  (matcmplx) expression; 
 

The return type is specified in parenthesis.  The expression type must follow the following rules, else a 
compile error. 

 
• Return type of vector, expression must equal matrix type or floating array variable. 
• Return type of matrix, expression must equal vector type or floating array variable. 
• Return type of veccmplx, expression must equal matcmplx type or complex array variable. 
• Return type of matcmplx, expression must equal veccmplx type or complex array variable. 

 
Example 

  matcmplx Ryy, Q, pyd; 
  veccmplx w, d; 
 
  Ryy = Q'*Q; Ryy += 1e-12*eye(Ryy); 
  pyd = Q'*d; 
  w = linequ(lu(Ryy),(veccmplx)pyd); 
 
 On the second line, the matrix product (*) of Q transpose times vector 
 d produces a complex column matrix pyd.  One the third line of code, 
 subroutine linequ requires a complex vector type (veccmplx), so we just 
 cast it to that type. 
 
Note!! Its best to enclose the expression in parenthesis since the casting operation has precedence left to 
right, i.e., it has the same level of precedence as the product operator *.  As an example, if were casting a 
matrix product expression to a vector, and the left operand is a vector, then you would get a run time 
error.  So always cast the expression in paren’s. 
 

Example 
  matrix Ryy;  // A N x M matrix 
  vector w, x; // x has N elements 
   . 
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   . 
   . 
  w = (vector)(x*Ryy); // w will have a length of M elements 

 

Two Special Conversion Operations 
 

 
A special case arises when a matrix expression results in a matrix of dimension 1 x 1, and were dividing it 
into a matrix or vector expression with different dimensions.  An example might be 
 

matrix rls(vector x, vector d, int p, float lambda) 
{ // recurive least squares routine 
 // x = input data 
 // d = desired output 
 // p = order of filter 
 // lambda = exponental weighting factor 
 // e = output vector of error term  
 // returns tap weights over time 
 int i, N, M; 
 matrix X, W, z, g, P; 
 float alpha, lambda, delta = .001; 
 vector vTmp; 
  
 N = Sizeof(x); 
 W = zerosM(N, p);  // Initialize weight matrix over time 
 X = convMat(x, p);  // generates convolution matrix X 
 P = eye(zerosM(p,p))/delta; 
 M = N-p+1; 
 for(i = 1; i <= M; i++) { 
  z = P*((matrix)X[i])'; 
  g = z/(lambda + X[i]*z); 
  alpha = d[i] - X[i]*W[i-1]; 
  W[i] = W[i-1] + (vector)(alpha*g'); 
  P = (P - g*z')/lambda; 
 } 
 return(W); 
} 

 
For line g = z/(lambda + X[i]*z); as shown above, the product operation X[i]*z  produces a  
1-by-1 matrix.  We than add a float point variable (lambda) to this matrix, with the result still being a 1 x 
1 matrix.  Matrix z is a p-by-1 matrix, so when we divide it by  the expression (lambda + X[i]*z), we 
should get a run time error.  However, Slide-Rule automatically turns the expression X[i]*z into a 
temporary float before adding the variable lambda to it. 
 
So Note!!  When ever a product operation turns into a 1 x 1 matrix, Slide-Rule converts the 
expression to a temporary float or complex expression, depending on whether the resulting  matrix 
is real or complex. 

 

The Matrix transpose operator ′ 
 
The matrix transpose operator  ′ can be used in an assignment statement or in an expression.  The 
following are examples: 

 
  Amat = Bmat’;    
  Amat = Bmat’* Cmat; 
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Note that for complex matrices, the transpose operation’ takes the complex conjugate.  To take the 
transpose of a complex matrix without taking its conjugate, we use the .′ operator combination as follows: 
  Cmat = Dmat.’; 
   

 Matrix row/column operations 
 
The following are examples of the permissible row/column operations that can be performed.  We use [i] 
to specify a row, and [:i] to specify a column, where i always starts counting from zero. 

 
  Amat[2] = Bmat[1]*2; // replace row 3 with 2*row 2 of Bmat 
  aVec = Bmat[3];  // interchange 
  Bmat[3] = Bmat[2];  // rows 
  Bmat[2] = Avec;  // 3 and 4 
  Bmat[0] += Bmat[1]*3; // add 3*row2 to row 1 
  Bmat[2] *= 2;   // row 3 times 2 
  Amat[:2] += Amat[:0] // column 3 = col 3 + col 1 
 

 Retrieving Matrix/Vector Elements 
 
We can retrieve Matrix/Vector elements by using double subscripts for matrix variables ( [i][j] ), and a 
single subscript variable for a vector variable ( [k] ).  For real matrix and vector types, the type returned is 
a float/double, while for complex matrix and vector types, the operation returns a complex type.  The 
following are examples as such. 

 
  ftemp = Bmat[1][1];  // retrieve row 2 col 2 of Bmat 
  ftemp = Avec[3];  // retrieve 4th element of Avec 
 

Setting Matrix/Vector Elements 
 

We can set Matrix/Vector elements in a similar manner as describe above.  The following is an example 
as such. 

   
  matrix Bmat[5][5]; 

for(i = 0; i < 5; i++)  { // initialize diag 
      for(j = 0; j < 5; j++) {// to 
   if(j == i) 
       Bmat[i][j] = 1; // 1 
   else Bmat[i][j] = 0; // non-diag elements to 0 
      } 
  } 

Print(Bmat); 
matrix -> Bmat(5,5) 
[row 
0000           1           0           0           0           0 
0001           0           1           0           0           0 
0002           0           0           1           0           0 
0003           0           0           0           1           0 
0004           0           0           0           0           1 
] 
 

Retrieving Matrix Rows and Columns 
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We can retrieve Matrix rows or columns by using a single subscript.  To retrieve row k (counting from 
zero), from real matrix M1, we have; 
 
 V1 = M1[k]; // V1 is real vector type 
 
To retrieve column j (counting from zero), from real matrix M1, we have; 
 
 V1 = M1[:j];  // V1 is real vector type 
 
 

Setting Matrix Rows and Columns 
 
We can set Matrix rows or columns by using a single subscript.  Suppose we have two real vectors of 
equal length, and we want to store in a real matrix.  The code for this might look like, 
 
 matrix sys; 

vector num[] = { 1, 2, 3, 4 }; 
vector den[] = { 4, 3, 2, 1 }; 

 
 sys = zerosM(2, Sizeof(num)); 
 sys[0] = num;  // store vector num to row 0 of matrix sys 
 sys[1] = den;  // store vector den to row 1 of matrix sys 
 Print(sys); 
 sys = zerosM(Sizeof(num), 2); 
 sys[:0] = num; // store vector num to column 0 of matrix sys 
 sys[:1] = den; // store vector den to column 1 of matrix sys 
 Print(sys); 

******************************************************************** 
matrix -> sys(2,4) 
[row 
0000           1           2           3           4 
0001           4           3           2           1 
] 
matrix -> sys(4,2) 
[row 
0000           1           4 
0001           2           3 
0002           3           2 
0003           4           1 
] 
 

The caveat here is that vectors num and den must be of equal length, else a run-time error is generated.  
Note that to store a vector to a matrix as a column, we use the colon operator : within the brackets (sys[:j] 
= V1;  // store vector V1 to column j of matrix sys).  Another method with less lines of code and more 
efficient is as follows,  
 
 Sys = ( num; den }; // store vector num to row 0 of matrix sys 

// store vector den to row 1 of matrix sys 
 
The previous code statement can be written as  
 
 Sys = ( num; den }’; // store vector num to column 0 of matrix sys 

 // store vector den to column 1 of matrix sys 
 

Generating a Zero Matrix or Vector 
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We can generate a zero matrix/vector variable with the following examples.  Note that the matrix/vector 
variables must have been previously defined.  Refer to the Functions reference (F7) under the Help 
Menu (matrix/Vector auxiliary functions). 
 
 
 V1 = zerosV(2000);   // real vector V1 to 2000 zero elements 
 V1c = zerosV(2000);   // complex vector V1c to 2000 zero elements 
 M1 = zerosM(50, 50);  // real matrix vector M1 to 50 x 50 zero elements 
 M1c = zerosM(50, 50); // complex matrix vector M1c to 50 x 50 zero elements 

 

Resizing Matrix/Vector Variables 
 

We can resize matrix/vector variables with the following examples.  Note that the matrix/vector variables 
must have been previously defined.  Refer to the Functions reference (F7) under the Help menu 
(matrix/Vector auxiliary functions). 
 
 vector V1[] = { 1, 2, 3 }; 
 matrix M1[][2] = ( 1, 2, 3, 4 }; 

vector V2; 
matrix M2; 

 
Print(V1); 
V2 = resizeV(V1, 5, 0);  // vector V1 to 5 elements, 2 0’s after element 3 
Print(V2); 
V2 = resizeV(V1, 5, -1); // vector V1 to 5 elements, 2 0’s before element 1 
Print(V2);  Print(M1); 
M2 = resizeM(M1, 3, 3, 0); // matrix M1 to 3x3, 0’s on row and column 3 
Print(M2); 
resizeM(M1, 3, 3, -1); // matrix M1 to 3x3, 0’s on row and column 1 
Print(M2); 
************************ Results ***************************************** 
vector -> V1(3) 
[col 
0000           1           2           3 
] 
vector -> V2(5) 
[col 
0000           1           2           3           0           0 
] 
vector -> V2(5) 
[col 
0000           0           0           1           2           3 
] 
matrix -> M1(2,2) 
[row 
0000           1           2 
0001           3           4 
] 
matrix -> M2(3,3) 
[row 
0000           1           2           0 
0001           3           4           0 
0002           0           0           0 
] 
matrix -> M2(3,3) 
[row 
0000           0           0           0 
0001           0           1           2 
0002           0           3           4 
] 
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Stripping a Vector of leading zeros 
 

We can strip a vector of leading zero’s as shown in the following example.  Note that the vector must 
have been previously defined.  Refer to the Functions reference (F7) under the Help menu (Matrix/Vector 
Auxiliary Functions). 
 
 while(V1[0] == 0) reduce(V1, 0, 1); 
 

Getting the size of Vectors/Matrices 
 

We can determine the number of elements in a vector or matrix by using the Sizeof function.  An example 
is shown below. 
 
 matrix M1[5][5]; 
 vector V1[25]; 
 int M, N; 
 
 M = Sizeof(M1); N = Sizeof(V1); 
  
Note that in both cases above, that M and N will be equal to 25.  To get row and column dimensions of a 
matrix, we use the rowSize and colSize functions as shown below. 
 
 M = rowSize(M1); N = colSize(M1); 
 

Vector/Matrix Sub-Copy Operations 
 

A sub-vector of a vector or a sub-matrix of a row or column matrix can be created with the following 
expression syntax’s. 
 

  vector    V[start, cnt) 
veccmplx  Vc[start, cnt) 

  matrix    M[start, cnt) 
matcmplx  Mc[start, cnt) 

   
where, 

   V     =   input vector (real); 
   Vc    =  input vector (complex). 
   M     =   input matrix (real); 
   Mc    =  input matrix (complex). 
   start = index of starting element (counting from zero) 
   cnt   = number of element to copy 
  Return value: 
   The new (copied) sub-vector or sub-matrix. 
 

Note! The start argument must have a range from 0 to the number of elements -1. An implied 
increment value of 1 is added to the start value until cnt elements are copied.  Note when 
we refer to a row or column vector, were referring to a matrix where either the row or 
column dimension is 1.  Any other matrix dimension will cause a run time error.  If 
pulling a row or column from a matrix, and then you want to copy a portion of it to a 
vector, use the following internal function copyV with the following prototypes. 

 
  vector    copyV(vector V1, int start, int cnt); 

veccmplx  copyV(veccmplx Vc, int start, int cnt); 
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Examples: 
 

#include "matrices.h" 
 
vector V1[] = { 1, 2, 3, 4, 5 }; 
vector V2, V3; 
matrix M1[][1] = { 1, 2, 3, 4, 5 }; 
matrix M2, M3; 
int   N; 
 
N = Sizeof(V1); 
Print(V1); 
V2 = V1[0,N-1]; Print(V2); 
Print(M1); 
M2 = M1[0,N-1]; Print(M2); 
M3 = magic(5); Print(M3); 
V3 = copyV(M3[:2],0,N-1); Print(V3); 
V3 = copyV(M3[2],0,N-1); Print(V3); 
 
***************************************************************** 
 
vector -> V1(5) 
[col 
0000           1           2           3           4           5 
] 
vector -> V2(4) 
[col 
0000           1           2           3           4 
] 
matrix -> M1(5,1) 
[row 
0000           1 
0001           2 
0002           3 
0003           4 
0004           5 
] 
matrix -> M2(4,1) 
[row 
0000           1 
0001           2 
0002           3 
0003           4 
] 
matrix -> M3(5,5) 
[row 
0000          17          24           1           8          15 
0001          23           5           7          14          16 
0002           4           6          13          20          22 
0003          10          12          19          21           3 
0004          11          18          25           2           9 
] 
vector -> V3(4) 
[col 
0000           1           7          13          19 
] 
vector -> V3(4) 
[col 
0000           4           6          13          20 
] 

 

Creating a Sub-Vector 
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A portion or sub-vector of a vector can be created with the following expression syntax’s. 
 

  vector    V[start:inc:last) 
veccmplx  Vc[start:inc:last) 

  vector    V[start:last) 
veccmplx  Vc[start:last) 

   
where, 

   V       = input vector (real). 
   Vc     = input vector (complex). 
   start   =  starting index (a literal integer or integer variable). 
   inc   = increment from start index, continuing to last index. 
   last  = index of last element (a literal integer or integer variable). 
  Return value: 
   The new created sub-vector. 
 

Note!! The indices (start and last) must range from 0 to the number of elements -1.  In the 
example below, the indices start and last must lie in the range of 0 to 4.  Also, for the reduced 
syntax’s without the increment index (inc), the increment value will assume the value of 1.  Note 
also, that we can use the transpose operator  as a shortened version of taking the conjugate of a 
complex vector.  This operator has no effect on a real vector.  

 
  An example. 
 

vector V1[] = { 1, 2, 3, 4, 5 }; 
veccmplx V1c[] = { 1+1j, 2-2j, 3+3j, 4-4j, 5+5j }; 
vector V2; 
veccmplx V2c; 
int  N; 
 
N = Sizeof(V1); 
Print(V1); 
V2 = V1[N-1:-2:0]; 
Print(V2); 
V2 = V1[0:N-2]; 
Print(V2); 
Print(V1c); 
V2c = V1c[0:N-2]; 
Print(V2c); 
V2c = V1c[0:N-2]’; 
Print(V2c); 
**************************************************************** 
 
vector -> V1(5) 
[col 
0000           1           2           3           4           5 
] 
vector -> V2(4) 
[col 
0000           5           3           1 
] 
vector -> V2(4) 
[col 
0000           1           2           3      4 
] 
vector(cmplx) -> V1c(5) 
[col 
0000           1+1j        2-2j        3+3j        4-4j        5+5j    ] 

] 
vector(cmplx) -> V2c(4) 
[col 
0000           1+1j        2-2j        3+3j        4-4j 
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] 
vector(cmplx) -> V2c(4) 
[col 
0000           1-1j        2+2j        3-3j        4+4j 
] 
 

Creating a Circulant matrix 
 
A circulant matrix is one in which each row is a shifted version of the row above it.  An example which 
uses the Sub-Vector technique as discussed in the previous topic follows. 
 

matrix Circulant(vector V1) 
{ 
 int    i, N; 
 matrix   C; 
  
 N = Sizeof(V1); 
 C = zerosM(N, N); 
 C[0] = V1; 
 for(i = 1; i < N; i++) { 
  V1 = { V1[N-1], V1[0:N-2] }; 
  C[i] = V1; 
 } 
 return(C); 
} 
vector Vx; 
matrix Mx; 
 
 Vx = vecLin(1, 5, 5); 
 Mx = Circulant(Vx); 
 Print(Mx); 
***************************************************************** 
matrix -> Mx(5,5) 
[row 
0000           1           2           3           4           5 
0001           5           1           2           3           4 
0002           4           5           1           2           3 
0003           3           4           5           1           2 
0004           2           3           4           5           1 
] 

 

Creating a Sub-matrix 
 

A portion or sub-matrix of a matrix can be created with the following expression syntax’s. 
 

  matrix     M[start1:inc1:last1, start2:inc2:last2); 
  matcmplx  Mc[start1:inc1:last1, start2:inc2:last2); 
  matrix     M[start1:last1, start2:last2); 
  matcmplx  Mc[start1:last1, start2:last2); 
  matrix     M[row, start2:inc2:last2); 
  matcmplx  Mc[row, start2:inc2:last2); 
  matrix     M[row, start2:last2); 
  matcmplx  Mc[row, start2:last2); 
  matrix     M[start1:inc1:last1, col); 
  matcmplx  Mc[start1:inc1:last1, col); 
  matrix     M[start1:last1, col); 
  matcmplx  Mc[start1:last1, col); 

 
where, 

   M  = input matrix (real) 
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   Mc  = input matrix (complex) 
   start1   =  starting row index (a literal integer or integer variable). 
   inc1   = increment from start1 index, continuing to last1 index. 
   last1  = index of last row element (a literal integer or integer variable). 
   start2   =  starting column index (a literal integer or integer variable). 
   inc2   = increment from start2 index, continuing to last2 index. 
   last2  = index of last column element (a literal integer or integer variable). 
   row = single row specification 
   col = single column specification 
  Return value: 
   =   The new sub-matrix. 
 

Note!! The indices (start and last) must range from 0 to the number of elements -1.  In the 
example below, the indices start and last must lie in the range of 0 to 4.  Also, for the reduced 
syntax’s without the increment index (inc), the increment value will assume the value of 1.  These 
expression syntax’s require that from the start index to the last index, that the progression must be 
of increasing order, i.e., the increment value (inc) must be great than zero, and the start index 
cannot be greater that the last index. 

 
  Examples 
 

#include "matrices.h" 
matrix M1, M2; 
 
M1 = magic(5); Print(M1); 
M2 = M1[1:3,0:4]; Print(M2); 
M2 = M1[1,0:4]; Print(M2); 
M2 = M1[1:3,3]; Print(M2); 
 
*********************************************** 

 
matrix -> M1(5,5) 
[row 
0000          17          24           1           8          15 
0001          23           5           7          14          16 
0002           4           6          13          20          22 
0003          10          12          19          21           3 
0004          11          18          25           2           9 
] 
matrix -> M2(3,5) 
[row 
0000          23           5           7          14          16 
0001           4           6          13          20          22 
0002          10          12          19          21           3 
] 
matrix -> M2(1,5) 
[row 
0000          23           5           7          14          16 
] 
matrix -> M2(3,1) 
[row 
0000          14 
0001          20 
0002          21 
] 

 

 The Print function 
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Routine Print is provided to print out Matrices and Vectors (both real and complex) in an efficient 
manner.  The internal print specification is g12.4 (refer to printf in Chapter 3).  If you need more 
resolution, you can print out individual elements using the printf function.  The use of this routine can be 
found in the examples of this chapter. 

 

In Summary 
 

This chapter doesn’t cover all the Auxiliary Functions for matrix and vector operations, so please consult 
Appendix A for a list of functions, and The Functions Reference (function key F7) in the software for 
function prototypes and description as well. 
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 Chapter 5 - The Editor 
 

 Introduction 
 
A custom editor has been developed and is provided as an adjunct to the software to allow the user to 
quickly edit a script file in an integrated environment.  This editor has been designed and developed both 
as a mouse driven editor and as a line editor using hotkeys.  The mouse driven portion allows the user to 
select and highlight selected text by positioning the caret and selecting text for deletion, copying, or 
inserting in the standard windows manner.  By the use of certain hotkeys, the user can select line(s) of 
‘code’ for deletion, copying, and or other functions as will be described below. 

 
As described in the tutorial section in the previous section, once a given shell script file has been selected, 
as displayed on the Hot key Bar, the depression of the function key F10 will evoke the Custom Editor and 
the selected shell script file.  If you run a given shell script file by depression of the Function key F11, 
and an error is detected, the Custom Editor will automatically be invoked with the selected shell script 
file, and with the cursor positioned at the faulted line of code in question.  The user can also select the 
Custom Editor once in the Shell script viewer (if plots were forthcoming), by depression of function key 
F10.  If no plots were output, the printer output file (<*.prn>) will be displayed in WordPad.  To bring up 
the shell script in the Custom Editor, terminate the printed output display (Alt+F4), select SlideRule as the 
input focus, and then depress the F10 function key. 

 

 Error Detection 
 

As stated above, once you run or execute a given shell script file and an error is detected, the Custom 
Editor is automatically invoked with the selected shell script file as input, and the cursor positioned on the 
faulted line of code.  The user can quickly edit the file, then depress function key F11 to save the file (to 
disk) and then automatically re-run the given shell script file.  If the Shell Viewer program along with 
several plotting windows are open, these will all be automatically closed with this one save and execute 
step (F11). 

 

 General Description 
 

When the editor is invoked with a given shell script file, the user will be shown an edit window similar to 
that shown in figure 5.1.  The Caption Bar displays the shell script file name along with its file path 
location.  The Menu Bar displays the menu functions that the user can invoke, by either using the mouse, 
or a combination of the underlined character and the Alt key.  As an example, to pull down the File menu, 
the user depresses the Alt+F keys.  The remaining display shows the line number along with the ‘code’, 
both in separate windows.  When the user invokes the editor with the F10 hotkey, the caret will be left 
justified on line 1.  Since the caret is a vertical flashing line that can be hard to detect, the line number 
with the caret will be displayed in red while the other line numbers will be displayed in black.  The caret 
position always will be displayed and will always indicate where the user can insert text, erase text with 
the backspace key, etc.  Please note that the line numbers displayed are not part of the shell script file, but 
are provided to give the user ease of edit operations.   
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Figure 5.1 

Cut and Paste Operations 
 

Under the Edit Menu are listed the standard visual cut and paste operations, namely Cut, Copy, Paste, and 
Undo.  These edit operations all require that the caret be positioned (except for Undo), and for Cut and 
Copy operations, that the desired text to be deleted or copied, be highlighted by dragging the mouse (left 
mouse button depressed).  These are standard edit operations in window type editors.  These operations 
can be speeded up by using hotkeys as depicted under the Edit menu and are as follows: 

   
 Cut ->  Ctrl+X        Copy -> Ctrl+C   Paste -> Ctrl+V         Undo ->Ctrl +Z 
 Del         Ins  
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 Deleting Lines 
 

A fast way to delete line(s) of ‘code’ is as follows.  First position the caret on the first line of code (any 
column will do) either with your mouse or with the up and down arrow keys.  Note that the line of code 
with the caret on it will have its line number displayed in red.  Next, hit the F1 function key to ‘mark’ this 
line of code.  Note the line number is now half green and half red.  If deleting more than one line, move 
the caret to the last line.  Direction can be either up or down.  Note that when you do this that the original 
marked line is now all green and the line number with the caret on it is displayed in red.  To delete the 
line(s), simply depress the F2 function key.  Please note that this clears the mark and that the marked code 
is gone.  To reverse this operation and restore the deleted code, simply do the Undo operation, i.e., 
Ctrl+Z. 

 

 Copying Lines 
 

A fast way to copy line(s) of ‘code’ for latter insertion is as follows.  First position the caret on the first 
line of code (any column will do) either with your mouse or with the up and down arrow keys.  Note that 
the line of code with the caret on it will have its line number displayed in red.  Next, hit the F1 function 
key to ‘mark’ this line of code.  Note the line number is now half green and half red.  If copying more 
than one line, move the caret to the last line.  Direction can be either up or down.  Note that when you do 
this that the original marked line is now all green and the line number with the caret on it is displayed in 
red.  To copy the line(s), simply depress the F3 function key.  Please note that this clears the mark. 

 
 

 Shifting Lines of Code 
 

Referring to Figure 5.1, we note that lines 8 through 12 are left justified.  Suppose that you want to shift 
these lines of ‘code’ right.  Please note that in this editor that the ‘\t’ tab character positions the code right 
4 character spaces.  For C-type code, we note that for ‘for’ loops or ’while’ loops, that the code needs to 
be shifted either right of left depending on previous edit operations.  Referring to figure 4.1, we first 
position the caret on the first line of code (any column will do) with the mouse or with the up/down 
left/right keyboard arrow keys.  Note that the line of code with the caret on it will have its line number 
displayed in red.  Next, hit the F1 function to ‘mark’ this line of code. Note the line number is half green 
and half red.  If shifting more than one line, move the caret to the last line.  Direction can be either up or 
down.  Note that when you do this that the original marked line is now all green and the line number with 
the caret on it is displayed in red.  To shift the marked lines right, simply hit the F5 function key the 
number of times you want the marked code shifted an equivalent 4 spaces right (done with tab keys).  To 
shift the code left, depress the F6 function key.  When done, depress the Escape key to unmark the ‘mark’ 
and note that the green ‘marked’ line is unmarked (either black if multiple lines or red if a single line of 
code has been shifted). 

 

 Appending or Inserting Copied or Deleted Lines of Code 
 

Previously we talked about copying lines of code with the F1/F3 function keys, and deleting lines of code 
with the F1/F2 function keys.  To append or insert this code, we proceed as follows.  If appending, first 
position the caret on the line of code that we want to append the copied line(s) too. Next, depress the 
combination of Ctrl+P, and observe that the code has been inserted after the line (marked by red) that the 
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caret resides on.  If to insert the copied code before the line, just depress the combination Ctrl+Shft+P, 
and note that the copied code is inserted before the line (marked by red) that the caret resides on. 

 

 Coding new Lines of Code 
 

To code statements after the current line with the caret (as marked in red), simply depress the combination 
Ctrl+O.  If the code is to be written before the ‘current line’, depress the Ctrl+Shft+O combination.  
Please note that the caret of the new line (to be coded) is positioned right and aligned with the previously 
‘current line’ in terms of white space. 

 

 Navigating Around 
 

To find a particular piece of code, select the Find... Tile under the Search Tile on the main menu (or 
Ctrl+F), and fill in the dialog box, then depress the enter key.  To repeat, hit the Enter key.  Make sure the 
caret is at the beginning of the file, i.e., line one.  For Find and Replace, select the Replace... Tile under 
the Search Tile on the main menu (or Ctrl+H), and fill in the dialog box, then click the Replace tile in 
the dialog box to find and replace a single entry, or the Replace All tile to find and replace all entries. 
Make sure the caret is at the beginning of the file, i.e., line one.  Don't select the Find Next tile, as that 
will skip an entry. 
 
A fast way to get to line 1 is to depress the Ctrl+Home key.  To get to the bottom of the file, depress the 
Ctrl+End key. Another fast way to get to a known line of code is to hit the Ctrl+G function key and enter 
the line number, then depress the enter key.  Alternately, one can use the scroll buttons, the scroll bar, the 
up and down keyboard arrow keys, and the ‘PgUp’ and ‘PgDn’ keys.  If the caret is at the beginning of a 
line, hit the End key to move the caret to the end of the line.  To move it (the caret) back to the beginning 
of the line, depress the Home key.   The mouse in combination with depressing the left mouse button is 
another favorite method for positioning the caret. 

 

 Bracket Search 
 

Many times while programming in C or C++, one forgets a bracket ( ‘{‘,  ‘[‘ , ‘(‘, ‘}’, ‘]’, ‘)’ ).  As an 
example, in an if statement, we use the characters ‘{‘ and ‘}’ to enclose more than one statement.  If you 
position the caret at the beginning of one of these matching pair of characters, then depress the Ctrl+F6 
function  (or Ctrl+Shft+%) key, the caret will move to the other matching bracket character if the code is 
correct.  If it doesn’t move, then you narrowed down where the offending syntax error occurs.  This 
function  works for the three types   ‘{‘,  ‘[‘ , and ‘(‘,  as described above. 

 

 More than one File 
 
 

Many times while developing an algorithm or a procedure, one wants to paste some code from another 
file.  To do this, first depress the F7 function key to save the current file.  Then depress the F10 function 
key to open the File Open Dialog box.  Select the file of interest, then depress the ‘Enter’ key.  Use the 
navigation aids as described above to go to the code of interest.  To ‘yank’ the code of interest, first mark 
the first line with the F1 function key.  Then move the caret to the last line of code, then depress the F4 
function key.  This will yank the desired lines of code, then switch you back to your original file where 
you can paste the lines of code in at the proper place with either the following combinations:  Cntl+P, 
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after the line with the caret on it;  Ctrl+Shft+P, before the line with the caret on it.  To get back to the 
alternate or second file, first save the current file to disk (F7), then depress the F8 function key.  Note that 
you can switch back and forth between the two files by continuously depressing the F8 function key. 

 

 Shell script error condition 
 

When executing a given shell script file, and a Message Box appears with a red icon, then this means that 
an error was detected in the complier, or a run time error was detected in the shell script interpreter.  For a 
complier error, the message could be something like “(line 12/begin line = 12)(sigyacc.y, 1370) call to 
unrecognized function print!!”.  After depressing the enter key, the custom editor will be executed with 
the cursor at the offending line of code, in this case, line 12.  For a run time error, the message box error 
will be as follows “(line y/begin line = x) Syntax error”.  This means a run time error was detected 
somewhere starting a line x and ending at line y.  After depressing the enter key, the editor program will 
attempted to find an error at line y, and if not, then line y-1.  If an error is detected, a message indicating 
the problem will be output,  Otherwise an error message will be output listing possible things to check 
between line x and line y.    

 

 Special Code Array Generation from Clipboard 
 

The user can generate data sequences as described under The Assignment Operator topic in Chapter 3, 
from highlighted column data in a Microsoft Excel Spreadsheet.  This special procedure allows one to 
generate data into a shell script file by highlighting a column or multiple columns (of data) in a Microsoft 
Excel spreadsheet.   First position the cursor at the selected point that you want data to be inserted into the 
shell script file,  then switch to the Excel window and highlight the column(s) of data,  then switch back 
to the custom editor,  then depress function key combination Cntl+F11 to bring up a dialog procedure.  
Fill in the variable name field, and select whether data type is float, char, vector, or matrix.  Types of 
char and vector assume a single column of data (in Excel).  For types of float or matrix, fill in the number 
of columns data field.  Then depress the enter key to generate the data.   
 

 Shell Script Print File 
 

To view the shell script print file, the user just needs to press the F12 function key, as in the Shell Script 
Viewer when displaying plots.  Note that in displaying the (*.prn) print file, that we use the Windows 
WordPad program.  Note that while displaying the print file that the function keys such as F10, etc., no 
longer are enabled, since WordPad is a Windows system utility. Either terminate (Alt+F4) or select the 
SlideRule graphic with your mouse. 

  

 Help menu 
 

Under the Help Menu Tile, the user can select a Reference Help file of the more than 500 plus internal 
functions, or a Help file on this Custom Editor.  Depressing of the Help Icon (or Ctrl+R) brings up the 
Help Reference Functions. 
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 Chapter 6 - Plotting Details 
 
 

Introduction 
 

This chapter takes you through a quick tutorial on how to generate plots quickly, and will present 
examples as such.  Also, there will be shown simplifying shortcuts to make the task for the user less 
tedious. 

 

 2D Plots 
 

The 2 D plots (function of two variables in Cartesian coordinates) come in six flavors, and their 
prototypes are as follows: 

 
1) ploty( float xMin, float xIncr, float *ypts, int n); 
   ploty( float xMin, float xIncr, vector Vy, int n); 
2) plotx( float yMin, float yIncr, float *xpts, int n); 
   plotx( float yMin, float yIncr, vector Vx, int n); 
3) plotxy( float *xpts, float *ypts, int n); 
   plotxy( vector Vx, vector Vy, int n); 
4) pxlogy(float *xpts, float *ypts, int n); 
   pxlogy(vector Vx, vector Vy, int n); 
5) pylogx( float *xpts, float *ypts, int n); 
   pylogx( vector Vx, vector Vy, int n); 
6) ploglog( float *xpts, float *ypts, int n); 
   ploglog( vector Vx, vector Vy, int n); 
  
where, 
 
xpts = array of x data points to plot.  
ypts = array of y data points to plot. 
Vx = vector of x data points to plot.  
Vy = vector of y data points to plot. 
yMin = y-value of first data point 
yIncr = y increment between y data points 
xMin = x-value of first data point 
xIncr = x increment between x data points 
n = number of data points to plot 

 
From the above it should obvious what each of the internal plotting functions do by their naming.  For 
example, routine ploty plots a 2D plot of y-data points (an array of types float (double), vector, or a  
matrix row or column), where the starting y-value starts at xMin, and the y-values are evenly spaced by 
xIncr, and the number of data points to plot is specified by n.  Now, in order to generate one of these 
plots, we need only to write three lines of code and of course have an array of data points to plot.  The 
following is an example to plot an array of 100 y-data points where the starting y-value begins at x-value 
equals zero, and the data points are evenly spaced by 1.  Will name the window of this plot as Plot of Y-
values Example. 

openPlot(“Plot of Y-values Example”); 
ploty(0, 1, yData, 100); 
pCRT(); 
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That’s it!  You’re done.  This little piece of code will open up a plotting window and plot the array with 
automatic scaling and numbering (with tick marks) of the two axis. Routine openPlot opens up the plot, 
and routine pCRT closes out the plot.  You must always have this pair to generate a plot.  Also, please 
note that when we talk about the x-axis, were talking about the horizontal (positive to the right), and for 
the y-axis, were referring to the vertical (positive being up).  Now, what if you want to make another plot, 
say 500 data points from vector gValues.  The code is as follows: 

 
openPlot(“Plot of Y-values Example”); 
ploty(0, 1, yData, 100); 
pCRT(); 
openPlot(“Plot of G-values Example”); 
ploty(0, 1, gValues, Sizeof(gValues)); 
pCRT(); 

 
Now you have two plots displayed in two windows.  Now, what about labeling these plots, changing 
colors, lines styles, etc.?  We can do all this and more in two ways.  The first way, and the hard way is to 
code these desires with the 2D plotting help routines as listed in the Functions Reference in Appendix A, 
and the prototype specifications using function key F7 in the software.  The easy way to do this is to stick 
with the three lines of code as described above, and then when execution of your script file is complete, 
and your plots are displayed, just select the Customize Tile on the Menu Bar.  You will be shown 
additional menu selections as follows: 

 
Title... 
X-Axis Label... 
Y-Axis Label... 
Grid on/off 
Horizontal grid on/off 
Background Color... 
Axis Color... 
Text and Arrow Color... 
Axis Thickness... 
Y-Label Orientation 
Axis and Tic Labels suppress 
Curve style... 
MinMax Values… 
Auto Scale 
Forced Tic Values… 
Aspect Ratio enable/disable 
____________________________________ 
Left Mouse-Rubber Band Functions ENABLED 
Right Mouse-Annotation Functions ENABLED  
 

Select one of these options, fill in the Dialog Box, and hit the enter key.  Notice the given plot is updated 
immediately.  Better yet, your shell script file has been updated.  There’s one caveat to this method, 
i.e., for multiple plot windows, make sure that the window titles are distinct in the openPlot function 
calls, since that ASCII title is what is used to search for in updating your shell script file. 
 

 MinMax Customize Feature 
 
Say your plotting a function such as f(x) = 1/x.  As x is close to zero, then the value of y becomes huge, 
and your plot becomes distorted because of this.  This function allows one to handle this situation. The 
plot on the left below shows the distorted plot.  So we select the MinMax Values tile under the Customize 
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tile, and enter the values -20, 20, -4, and 4 into the dialog box as shown.  The plot gets updated, and the 
pminmax function call is inserted just after the Openplot function statement. 
 

 
 

30.0

25.0

20.0

15.0

10.0

5.0

.0

-5.0

(1e+13)

20151050-5-10-15-20
X - AXIS

MinMax Values Function 

Y
 
A
x
i
s

y =tan(x)/atan(x)y = 1/x

4

3

2

1

0

-1

-2

-3

-4
20151050-5-10-15-20

X - AXIS

MinMax Values Function 

Y
 
A
x
i
s

y =tan(x)/atan(x)

y = 1/x

 
 

 Aspect Ratio enabled/disable 
 

When plotting round objects, we need to make the aspect ratio square, since normally for x/y plots it’s not.  
The following plots below show that be just clicking on the Aspect Ratio enable/disable tile under the 
Customize tile, one can switch back and forth between the two views. 
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 Curve Pen Style 
 

On any of the x/y plots, one can plot multiple curves on a given plot, and the software will automatically 
adjust the range of x and y axis including the tic marks.  If one wants to change the color, curve style, 
and/or the line thickness, one first selects the curve number, then one or more of the options as shown in 
the dialog box. 
 

 
 

The line style comes in 38 styles, namely, solid line, Dashedline, dottedline, dashdotline, dashdotdotline, 
square symbol, cross hair, sqr rot 90 deg, triangle - inverted,  triangle, solid square, solid triangle - inv, 
solid triangle, solid sqr - rot 90 deg, line from x-axis (xline), single pixle points, Poles - x marks, Zeros - 
small circles, line + sqr symbol, line + cross hair", line + sqr rot 90 deg, line + triangle - inverted,line + 
triangle, line + solid square, line + solid triangle - inv, line + solid triangle,line + solid sqr - rot 90 deg, 
xline + sqr symbol, xline + cross hair, xline + sqr rot 90 deg, xline + triangle - inverted, xline + triangle, 
xline + solid square, xline + solid triangle - inv,xline + solid triangle, xline + solid sqr - rot 90 deg, xline + 
staircase, staircase. Find below a plot having used this customize feature. 
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The other functions as previously listed, either present a dialog box or switch from an on to off condition 
or vice-versa. In addition to the functions under the Customize tile, we can depress the right mouse button 
after positioning the mouse curser to a selected point on the displayed plot, to perform the following 
functions which are listed below.  

            
Text Insert… 
Draw Arrow… 
Draw Line 
Draw Box (text wrap) 
Draw Box (NO test wrap) 
Move Text within box 
Edit Test (text wrap) within Box… 
Edit Test (NO text wrap) within Box… 
Delete Box 
Delete Box and Text plus Arrow 
             

 Annotation with Text Insert, Draw Arrow, and Draw Line 
 
On x/y plot types produced from function calls of plotxy, ploty, plotx, ploglog, plogxy, pxlogy, we can we 
annotate these drawings with text and arrows interactively with our mouse once the plot has been 
displayed on the monitor.   In the above example, choose one of the plots, pick any point (by cursor 
location) to annotate the drawing with text, then depress the right most key on your mouse and note the 
popup menu.  While still holding down the right most key, pull the mouse down and over the Text Insert 
menu selection, then release the right key on your mouse.  Note the dialog box in the upper left corner of 
the monitor.  Enter some text in this dialog box, then depress the Enter key (twice) or click the OK button 
(twice) with your mouse.  This procedure allows the user to enter multiple lines of annotation by using a 
single Enter key after each entry, then terminating with another Enter key.  Note that the drawing is 
refreshed, and the text is displayed to the right of the point that the cursor was pointing to when the right 
most button on your mouse was depressed.  Also note that the cursor point marks the text in the lower-left 
corner of the displayed text.  Now, depress the F10 hotkey, and observe the ptext function call right 
before the pCRT function call for the given display plot.  In effect, the program modifies the shell script 
for you, such that the next time you run that particular shell file, you don’t have re-annotate the whole 
mess again.  If you need to erase a given annotation, select the Edit menu, and click the Undo or Undo 
All tile.  For the Undo function, you can alternately use the Crtl+Z combo.  These functions will erase 
either the last interactive function or all of the interactive functions as well as updating the shell script file 
for you.  You can also edit the script file (F10), then depress the F11 hotkey to save the script file and 
rerun the script again.  Please note that once the Shell is terminated, that the next time you run the script 
file, the functions that were added interactively can no longer be erased with the Undo or Undo All 
Functions. 
 
Now, repeat the above procedure, but this time, instead of selecting text annotation, select the arrow tile.  
When you do this, note that a line is drawn interactively from the selection point to the current position of 
the mouse.  Move the mouse cursor point to where you want the tail of the arrow, then depress and release 
the right mouse button.  Note the text dialog box as before.  Enter the appropriate text and depress the 
Enter key (twice) on your keyboard as before.  Note the drawing is being re-drawn and that an arrow is 
being drawn as specified with the appropriate text.  Again, depress the F10 hotkey, drag the scroll bar 
down until we observe the ptext and arrowP function calls right before the pCRT function call. 
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Note in the above procedure, that the program figures out the correct point to insert the code from the text 
in the openPlot function call.  So for multiple plotting windows in a given script file, make sure the 
ASCII text in the openPlot function calls are all different. 
 

Draw Box 
 

In addition to the functions named previously, i.e., Text Insert…, Draw Arrow…, and Draw Line,  we can 
draw a box (with no text inside) for input of a multiline text, or we can draw a box around text for either ; 
(1) editing with the Edit text with Box… function;  (2) to delete the text within the drawn box with the 
Delete Box and Text function; (3) to move the text and box with the Move text with Box function.  This 
function comes in two favors, namely Draw Box (text wrap)  and Draw Box (No text wrap).  Choose Text 
Wrap if the text is like a narrative, and you don’t mine if text is wrapped to a new line.  Choose No Text 
Wrap, if you want the lines within the box to stay the same. To perform any of these functions, position 
the cursor at the upper left corner of the desired box, then right click your mouse, and with the right 
button on your mouse depressed, move the cursor down over the Draw Box tile, then release the right 
button on your mouse.  Move the cursor down and to the right until you have the desired box size. Then 
right click your mouse to complete the operation.  Note that the size of the box determines the length of 
the text within the box, and that new lines within the box break on a space character. 

 

Move Text with Box 
 

This function allows for moving a box with or without text on the drawn plot.  To perform this function, 
position the cursor any where within the box, then right click your mouse, and with the right button on 
your mouse depressed, move the cursor down over the Move Text with Box tile, then release the right 
button on your mouse.  Move the cursor to position the box and text to the desired location, and then right 
click your mouse to complete the operation.   
 

Edit Text within Box 
 

This function allows for editing text within a box on the drawn plot.  In comes in two favors, namely Text 
Wrap and No Text Wrap.  Choose Text Wrap if the text is like a narrative, and you don’t mine if text is 
wrapped to a new line.  Choose No Text Wrap, if you want the lines within the box to stay the same. To 
perform this function, position the cursor any where within the box, then right click your mouse, and with 
the right button on your mouse depressed, move the cursor down over the Edit Text (text wrap) within 
Box, or Edit text (No text wrap) within box  tile, then release the right button on your mouse.  Note the 
Edit Multiline Text in Box dialog that appears.  Edit and/or enter the desired text, then depress the enter 
key to complete the edit operation.  If no drawn box, first do the Draw Box function as described above, 
then return to this function.  Note that the size of the box determines the length of the text with in the box, 
and that new lines within the box break on a space (for the text wrap case).  For the text wrap case, the 
new line character (‘\n’), is replaced by a space, while for the No text wrap case, the new line character is 
replaced by the $ character.  
 

Delete Box 
 

This function allows for deleting a box on the drawn plot.  To perform this function, position the cursor 
any where within the box, then right click your mouse, and with the right button on your mouse 
depressed, move the cursor down over the Delete Box tile, then release the right button on your mouse.  
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Note the drawn box is gone.  If there is text within the deleted box, your can draw another box around this 
text to either lengthen or shorten the length of the text lines.  Note that the vertical left, top and bottom 
lines of the resulting box are adjusted for the text.  The right vertical line is fixed (in the code); however it 
is either stretched or lengthened when the box is drawn. 
 

Delete Box and Text 
 

This function allows for deleting a box and text on the drawn plot.  To perform this function, position 
the cursor any where within the box, then right click your mouse, and with the right button on your mouse 
depressed, move the cursor down over the Delete Box and Text tile, then release the right button on your 
mouse.  Note the drawn box and text is gone.  
 

Annotation with Symbols 
 

In addition to entering ASCII text, as described previously, the user can enter up to 48 Greek symbols, the 
degree symbol as a superscript, and all of the ASCII text including the 48 Greek symbols as a superscript 
or as a subscript.  The complete list is shown below.  As an example, to enter the capital symbol Gamma 
with a subscript of ‘IN’, the entry would look like ‘\Gamma_I_N’.  The under-score character is a marker 
saying in effect that the next ASCII charter is a subscript. To enter a superscript, we use the up tilde 
ASCII character ‘^’.  As an example, for the lower case beta raised to the fourth power, the entry would 
look like \beta^4.  Note, to enter more than 1 character as a super or sub script, enclose in curly brackets.  
An example might be, e{^j\omega}.  Note that curly brackets are reserved for this function, and my not 
be used in the previous described annotations modes. 
 

Character Description Character 
Entry 

Character Description Character 
Entry 

Α   capital Alpha  \Alpha α   lower case alpha  \alpha 
Β   capital Beta  \Beta β   lower case beta  \beta 
Γ   capital Gamma  \Gamma γ   lower case gamma  \gamma 
Δ   capital Delta  \Delta δ   lower case delta  \delta 
E  capital Epsilon  \Epsilon ε   lower case epsilon  \epsilon 
Z  capital Zeta  \Zeta ζ   lower case zeta  \zeta 
H  capital Eta  \Eta η   lower case eta  \eta 
Θ   capital Theta  \Theta θ   lower case theta  \theta 
Ι   capital Iota  \Iota ι   lower case iota  \iota 
Κ   capital Kappa  \Kappa κ   lower case kappa  \kappa 
Λ   capital Lambda  \Lambda λ   lower case lambda  \lambda 
Μ   capital Mu  \Mu μ   lower case mu  \mu 
Ν   capital Nu  \Nu ν   lower case nu  \nu 
Ξ   capital Xi  \Xi ξ   lower case xi  \xi 
Ο   capital Omicron  \Omicron ο   lower case omicron  \omicron 
Π   capital Pi  \Pi π   lower case pi  \pi 
Ρ   capital Rho  \Rho ρ   lower case rho  \rho 
Σ   capital Sigma  \Sigma σ   lower case sigma  \sigma 
T  capital Tau  \Tau τ   lower case tau  \tau 
Υ   capital Upsilon  \Upsilon υ   lower case upsilon  \upsilon 
Φ   capital Phi  \Phi ϕ   lower case phi  \phi 
Χ   capital Chi  \Chi χ   lower case chi  \chi 
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Ψ   capital Psi  \Psi ψ   lower case psi  \psi 
Ω   capital Omega  \Omega ω   lower case omega  \omega 
o   Degree symbol  \deg 

 

  

 Zoom mode 
 
 
On x/y plot types, we can zoom into these plots by enclosing a portion of the plot in a rubber band 
window that we form by using the mouse.  In the digitalF sub-directory, select file lowPass and execute.  
On the Magnitude dB plot window, select a portion of the pass band by positioning the mouse cursor at a 
selected point.  Then hold down the left mouse button and drag the mouse to the right and down.  Notice 
the rectangular square window that is formed.  Now let go of the left mouse button and observe the blown 
up plot.  You can try this again on the blown up plot for further magnification of the area of interest.  To 
get back to the normal sized plot, just click on the right mouse button.  Note that if you form a rectangular 
rubber band window with no data points enclosed, or if the rubber band window only surrounds only a 
single data point, then no blown up plot will be forthcoming.  The following plots are from this technique.  
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Meta File Generation 
 
 
A good method for inserting graphic plots into documents is to select the Metafile Generate... under the 
File menu.  If you have a word processor such as Microsoft Word,  select the Plotting tile on the main 
menu and run A mesh Grid, then once the drawing is complete, fill in the MetaFile File Input Name... 
dialog procedure under the File tile, then switch to the word processor, and import the drawing from 
Insert/Picture/From File… enhanced meta file format (<*>.emf).  The graphic, once inserted into your 
document, will have the same aspect ratio as shown on your monitor, however, it will be larger then you 
desire.  To resize the graphic, select the graphic with your mouse and double click on it, then 
Format/Picture… and the size tab.  Make sure the Lock aspect ratio and the Relative to original picture 
size check boxes are checked.  Then adjust the Width or Height using the input dialog boxes.  Finally 
position the graphic in your document using the ruler slider.  Below, is a plot from this procedure, and 
inserted into this document using Microsoft Word Insert Picture Mode with metafile input.   
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As seen from the above example, this method offers good resolution for printer output rather than using a 
bitmap and the clipboard.  This example was sized at a width of 6 inches.  To position two documents 
side by side, proceed as follows.  Resize the first graphic to ~ 3.25 to 3.5 inches (8.255 to 8.89 cm) and 
position on the left.  Insert the second graphic below the first and resize to the same dimensions.  First 
adjust the margins under File/Page Setup…, such that it’s 7 to ~ 7.5 inches (19.05 cm), and then select 
the second graphic with your mouse.  Then Format/Drop Cap… and None.  Drag the second graphic up 
and to the right of the first graphic.  Below is an example as such. 
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Another technique is to do an overlay of one metafile plot over another.  On the example below, the fist 
metafile graphic was resized to ~6 inches in width.  The second graphic was resized to ~3 inches in width; 
then on the Layout tab, we select In front of text and with the Horizontal Alignment set to other; and 
finally, on the Color and Line tab, set the color to white with Transparency to 0%. 
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The Histogram Plot 
 

The histogram plot comes in a single flavor and its prototypes are as follows: 
 

void  histoP(float *array, int npts, float min, float max, int nbins); 
void  histoP(vector V1, int npts, float min, float max, int nbins); 
 
where, 
 
array = input data array of real data 
V1 = a real vector of data points 
min =  the minimum value of the first bin 
max =  the maximum value of the last bin 
nbins = the number of divisions or bins for displaying data distribution 
   range : 0 -> 100. 

 
The y-axis will be plotted as a percentage in the range of 0 to 100.  Note that the min and max 
values on the calling sequence don’t have to be the absolute minimum or maximum of the data 
array.  Hint (for nice labeled tick marks on the x-axis, chose nice values for the min and max 
values passed to histoP). 

 
This supplied function has the same restrictions and programming caveats as the 2-D plots as described 
previously, i.e., we must open the plot with the function call openPlot(...),and close out the plot with the 
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function call pCRT().  We can also customize these plots interactively with our mouse once the plot is 
displayed on the monitor by selecting the Customize Tile.  This displays the following options: 

 
Title... 
X-Axis Label... 
Y-Axis Label... 
Grid on/off 
Horizontal Grid on/off 
Background Color... 
Axis Color... 
Text Color... 
Axis Thickness... 
Y-Label Orientation 
Histo specs... 
Plot color... 
__________________________________________ 
Left Mouse-Rubber Band Functions DISABLED 
Right Mouse-Annotation Functions ENABLED  
 

The Histo specs allow you to change the starting and ending values of the first and last bins, and also the 
number of bins.  The Plot color… tile allows one to change the color of the displayed bins.  All other 
options are same as previously described under the 2-D Plots description.  In addition to the functions 
listed above under the Customize tile, we can depress the right mouse button after positioning the mouse 
curser on the viewed plot, to perform the following functions which are listed below.  

            
Text Insert… 
Draw Arrow… 
Draw Line 
Draw Box (text wrap) 
Draw Box (NO test wrap) 
Move Text within box 
Edit Test (text wrap) within Box… 
Edit Test (NO text wrap) within Box… 
Delete Box 
Delete Box and Text plus Arrow 

 
Below is the code for a simple histo plot of the distribution of 1000 Guassian data points with zero mean 
and unit variance generated by a call to internal function uniformV.  The code for this follows. 
 

Vector V1; 
int N = 1000; 
 
V1 = uniformV(N); 
openPlot("Histogram Example"); 
histoP(V1, Sizeof(V1), -4, 3, 70); 
yLabel("PERCENTAGE",0); 
Title("Gaussian Noise wirh Zero Mean and Unit Variance"); 
xLabel("1000 Values over 70 bins"); 
colorB(191,191,191); 
colorT(0,0,0); 
axesS(0,3,0,0,0); 
grid(); 
pCRT(); 
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 The Polar Plot 
 

The Polar plot comes in two flavors and its prototypes are as follows: 
 

void  polarP(float *r, float *theta, int npts); 
void  polarP(vector Vr, vector Vt, int npts); 
void  polarPdB(float *r, float *theta, int npts, float cutoff); 
void  polarPdB(vector Vr, vector Vt, int npts, float cutoff); 
 
where, 
 
r = array of radial data 
Vr = vector of radial data 
theta = array of angular data in radians 
Vt = vector of angular data in radians  
npts = number of points in each array(both must be same size) 
cutoff = dB cutoff point in inner circle(must be  <= -20.)   

 
We can customize these plots interactive with our mouse once the plot is displayed on the monitor by 
selecting the Customize tile.  This displays the following options: 

 
Title... 
X-Axis Label... 
Background Color... 
Axis Color... 
Text Color... 
Curve style... 

 
 
 
Below is an example of a small  program to generate polar plots. 
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vector Vr[360], Vt[360]; 
float theta, x; 
int i; 
 
for(i = 0; i < 360; i++) 
{ 
 x = (i - 180)*pi/30.; 
 if(abs(x) < 0.0001) 
  Vr[i] = 1.5; 
 else 
  Vr[i] = 1.5 * abs(sin(x)/x); 
 Vt[i] = (pi * i)/180.; 
} 
openPlot("Polar Example 1"); 
Title("Antenna Pattern - abs. field"); 
xLabel("Antenna Pattern - abs. field"); 
penS(0,1,255,0,0); 
polarP(Vr, Vt, Sizeof(Vr)); 
pCRT(); 
openPlot("Polar Example 2"); 
Title("Antenna Pattern - dB"); 
xLabel("Antenna Pattern - dB"); 
penS(0,3,255,0,0); 
polarPdb(Vr, Vt, Sizeof(Vr), -40.); 
pCRT(); 

 
The first plot in the above example follows:  Note that when you generate a metafile for this type of plot, 
to keep the horizontal and vertical lengths the same, else the plot will be distorted. 
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 The Vector Plot 
 

 
The Vector Plot plots a vector field or gradient field on an x-y plot.  Its prototype is as follows: 

 
void  vectorP(float xstart, float xincr, float ystart, float yincr,  

matrix Mx, matrix My, float scale); 
where, 
 
xstart = starting value on x axis for grid 
xincr =  value for incrementing to next grid point on x-axis 
ystart = starting value on y axis for grid 
yincr =  value for incrementing to next grid point on y-axis 
Mx = matrix of delta  x changes at each data point 
My = matrix of delta  y changes at each data point 
scale = relative scale value applied to each vector for plotting appearance 
 

We can customize these plots interactively with our mouse once the plot is displayed on the monitor by 
selecting the Customize tile on the menu bar.  This displays the following options: 

 
Title... 
X-Axis Label... 
Y-Axis Label... 
Grid on/off 
Background Color... 
Axis Color... 
Text and Arrow Color... 
Axis Thickness... 
Y-label orientation 
Forced Tic Values… 
Aspect Ratio enable/disable 
Scale factor... 
____________________________________ 
Left Mouse-Rubber Band Functions ENABLED 
Right Mouse-Annotation Functions ENABLED  
Scale factor... 

 
In addition to the functions listed above under the Customize tile, we can depress the right mouse button 
after positioning the mouse curser on the viewed plot, to perform the following functions which are listed 
below.  

            
Text Insert… 
Draw Arrow… 
Draw Line 
Draw Box (text wrap) 
Draw Box (NO test wrap) 
Move Text within box 
Edit Test (text wrap) within Box… 
Edit Test (NO text wrap) within Box… 
Delete Box 
Delete Box and Text plus Arrow 

 
Below is an example of a small program to generate a vector plot 
 /* 
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 * Example of vectorP plot 

  * Given teo wires with a current of 50 amps and 
  * separated by 4cm, plot a relative Inductive Field B. 
  * 
  * Note! put the wires at (3, 5) and (7, 5) 
 */ 
 matrix By, Bx; 
 int i, j; 
 float delx, dely; 
 float dx, dy; 
 float x, y; 
 float temp1, temp2; 
 float ftemp, mu0, K; 
 float r1, r2; 
 
 mu0 = 4.*pi*1.E-7; 
 K = mu0*50000./pi2; /* pi2 = 2.*pi */ 
 dx = 0.4; dy = 0.4; 
 Bx = zerosM(25, 25); By = zerosM(25, 25); 
 for(i = 0, x = 0; i < 25; i++) 
 { 
  y = 0; 
  for(j = 0, y = 0; j < 25; j++) 
  { 
   temp1 = 3. - x; temp2 = 5. - y; 
   r1 = temp1*temp1 + temp2*temp2; 
   temp1 = 7. - x; 
   r2 = temp1*temp1 + temp2*temp2; 
   if(r1 < 0.1 || r2 < 0.1) { 
    delx = 0.; dely = 0.; 
   } 
   else { 
    delx = (y - 5.) * (1./r2 + 1./r1); 
    delx *= K; 
    dely = (3.-x)/r1 + (7.-x)/r2; 
    dely *= K; 
   } 
   Bx[i][j] = delx; By[i][j] = dely; 
   y += dy; 
  } 
  x += dx; 
 } 
 openPlot("Vector Example"); 
 Title("B Field - 2 Parallel Wires"); 
 xLabel("X - Distance"); 
 yLabel("Y Distance",0); 
 vectorP(0, 0.4, ., 0.4, Bx, By, 15); 
 colorB(207,207,207); 
 axisS(0,2,0,0,0); 
 pCRT(); 
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 The Polezero Plot 
 

The Polezero Plot plots complex poles and zeros.   Its prototype is as follows: 
 

void  polezeroP(complex *parray, int pnpts, complex *zarray, int znpts); 
void  polezeroP(veccmplx Vp, int pnpts, veccmplx Vz, int znpts); 

 
where, 
 
parray = complex array of poles 
Vp = complex vector of poles 
pnpts = number of poles   
zarray = complex array of zeros 
Vz = complex vector of zeros 
znpts = number of zeros   
 

Multiple plots per open plot window are not possible. 
 

This plot is used in the GUI design procedure for IIR filters as will be described in Chapter 8.  Below is 
an example of the poles and zeros of an IIR Butterworth Filter Low pass filter with All Pass group delay 
compensation. 
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 The 3-D Line Plot 
 

The 3-D line plot is a three dimensional plot of x, y, and z data points.   Its prototype is as follows: 
 

void  plot3C( float *xpts, float *ypts, float *zpts, int n); 
void  plot3C( vector Vx, vector Vy, vector Vz, int n); 
 
where, 
 
xpts = array of x data points to plot.  
ypts = array of y data points to plot. 
zpts = array of z data points to plot. 
Vx = vector of x data points to plot. 
Vy = vector of y data points to plot. 
Vz = vector of z data points to plot. 
n  = number of data points to plot 

    
Note! 
 
This call must be made between the openPlot function call and the pCRT function call.  You 
must also make a call to the camloc3D function to set the viewing angle.  This plot also has 
customized features under the Customize tile as follows: 

 
X-Axis Label... 



96 

Y-Axis Label... 
Background Color... 
Camera Elevation... 
Camera Azimuth... 
Line Thickness... 
Line Color... 
Axis/Ticks marks on/off 
Back Face Lines on/off 
__________________________________________ 
Left Mouse-Rubber Band Functions DISABLED 
Right Mouse-Annotation Functions DISABLED  

 
void camloc3D(float  dist, float azimuth,  float angle); 
 

where, 
  
dist = distance of camera from 3D box in z-axis units 
azimuth = angle of camera about z-axis from the x-axis in degrees. 
angle = elevation angle (degrees) of the camera up from the x-y plane. 

 
Remarks 
 
As a general rule, make parameter dist approximately equal to: 
 dist =  abs( 6.*(zmax - zmin)); 

 
Below is an example of a small program to generate a 3-D line plot. 

 
vector x[1000], y[1000], z[1000]; 
int i; 
float delta, t; 
 
delta = 10.*pi/999.; 
t = 0.; 
for(i = 0; i < 1000; i++) 
{ 
 x[i] = 0.5*sin(t); 
 y[i] = 0.5*cos(t); 
 z[i] = t/(10.*pi); 
 t += delta; 
} 
openPlot("Circular Helix"); 
surwir3D(2); 
colorB(255, 255, 255); 
xLabel("X-AXIS"); 
yLabel("Y-AXIS", 1); 
zLabel("Z-AXIS"); 
/* specify camera location */ 
camloc3D(15.0,200.0,25.0); 
plot3C(x, y, z, 1000); 
pCRT(); 
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 The Contour Plot 
 

The ContourP plots a x-y contour plot from a grid array of data points.   Its prototype is as follows: 
 

void  contourP(matrix Z,  int nlevels, 
   float xmin, float xmax, float ymin, float ymax); 
   
where, 
 
Z = input matrix of real data in elevation ( Z[x][y] ). 
nlevels = number of contour levels 
xmin = minimum x-value in grid 
xmax = maximum x-value in grid 
ymin = minimum y-value in grid 
ymax = maximum y-value in grid 
 

This plot also has customized features under the Customize tile as follows: 
 

X-Axis Label... 
Y-Axis Label... 
Background Color... 
Contour Fill on/of… 
Color Bar… 
Axis suppress 
Axis/Ticks Color… 
Contour Lines on/off… 
Contour Labels off/on… 
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__________________________________________ 
Left Mouse-Rubber Band Functions DISABLED 
Right Mouse-Annotation Functions DISABLED  

 
Please find below a shell script to generate an example contour plot along with the contour plot as shown 
below. 

 
const int GSIZE = 61; 
matrix Z[GSIZE][GSIZE]; 
#include "hillsubs.txt" 
float xmax,xmin,ymax,ymin,zmax,zmin; 
/* test of Surface plots in 3D */ 

 
 xmin = xmax = ymin = ymax = 0; zmin = zmax = 0; 
 hills(GSIZE,GSIZE,xmin,xmax,ymin,ymax,zmin,zmax); 
  
 openPlot("Hills Contour"); 
 colorBar(7); 
 confil3D(45); 
 Title("Hills Contour Surface"); 
 xLabel("Range"); 
 yLabel("Cross Range",0); 
 contourP(Z, 16, xmin, xmax, ymin, ymax); 
 colorB(223,223,223); 

 axisS(0,1,0,0,0); 
 grid(); 
 pCRT(); 
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A different flavor of this plot is the Line-Contour plot.  It’s prototype is as follows: 
 

void  contour(matrix Z,  int nlevels, float xmin, float xmax,  
float ymin, float ymax, vector Levels); 

   
where, 
 
Z = input matrix of real data in elevation ( Z[x][y] ). 
nlevels = number of contour levels 
xmin = minimum x-value in grid 
xmax = maximum x-value in grid 
ymin = minimum y-value in grid 
ymax = maximum y-value in grid 
Levels = vector of contour levels 
 

This plot also has customize features under the Customize tile as follows: 
 

Title Label... 
X-Axis Label... 
Y-Axis Label... 
Grid on/off 
Horizontal Grid on/off 
Background Color... 
Axis Color... 
Text Color... 
Axis Thickness... 
Y-Label Orientation 
Color Bar… 
Axis suppress 
Axis and Tick Labels suppress 
__________________________________________ 
Left Mouse-Rubber Band Functions DISABLED 
Right Mouse-Annotation Functions ENABLED  

   
In addition to the functions listed above under the Customize tile, we can depress the right mouse button 
after positioning the mouse curser on the viewed plot, to perform the following functions which are listed 
below.  

            
Text Insert… 
Draw Arrow… 
Draw Line 
Draw Box (text wrap) 
Draw Box (NO test wrap) 
Move Text within box 
Edit Test (text wrap) within Box… 
Edit Test (NO text wrap) within Box… 
Delete Box 
Delete Box and Text plus Arrow 
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 The 3D-Mesh Plot 
 

The routine consurf3D plots a x-y/z wire mesh plot from a grid array of data points.   Its prototype is as 
follows: 

 
 

void consurf3D(int style, matrix Z, float xmin, float xmax, float ymin, float ymax); 
  

where,  
   

style =  an or’ed value of output options 
     0 = draw all surface lines 
     1 = suppress lines hidden by surface 

    2 = suppress hidden lines and bottom of surface 
     4 = no axis or tick labels 
 Z = the matrix[x][y] of elevation points to be plotted 
 xmin = the minimum x value 
 xmax = the maximum x value 
 ymin = the minimum y value 
 ymax = the maximum y value 

 
 

In order to get colored grated contour, besides inserting a call to routine consurf3D between the 
openPlot(...) and the plot closeout call pCRT(), the user needs to make two additional calls; (1) The 
colorBar routine to specify which color bar to use, and a call to routine confil3D to specify the number of 
levels in the bar (45 works good).  These prototypes have been previously listed under X/Y Contour Plot. 
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We can also customize these plots interactive with our mouse once the plot is displayed on the monitor by 
selecting the Customize Tile.  This displays the following options: 

 
X-Axis Label... 
Y-Axis Label... 
Z-Axis Label... 
Background Color... 
Camera Elevation... 
Camera Azimuth... 
Surface Wire on/off 
Contour Fill on/off 
Back Face on/off 
Color Bar... 
Hidden Line on/off 
Bottom Line on/off 
Contour Surface top 
Axis/Tick marks off/on 
Contour Lines on/off 
Contour Labels off/on 

 
Selection of one of these functions will either present a dialog procedure or turn off that option. In any 
case, the display will be updated along with the shell script file.  As an example, if the surface wire in on, 
and you click on that Tile, then the display will immediately be updated with the surface wire’s turned 
off.  If they were off, you will be offered a dialog procedure to select one of eight colors to turn this 
option back on.  You can go to the plots sub-directory, and select different plots, and play with these 
options.  Below is an example of a code segment to plot a complex Jacobian.  This plot can be viewed 
below. 
 

/* 
 * Jacobian  Plot. 
 */ 
matrix Z; 
float u1max,u1min,u2max,u2min; 
int i,j,k; 
float u1, u2, q, r; 
complex y, snu, ctemp; 
float K, Kprime, ftemp, du1, du2; 
/* set up data limits */ 
K = 2.; Kprime = 1.75; 
u1min = -K; u1max = 4.375*K;  
u2min = 0.; u2max = 5.*Kprime; u1 = u1min; 
du1 = .20; du2 = .2; 
q = exp(-pi*Kprime/K); 
k = 0; K = 2.; 
 

 Z = zerosM(61, 51);  
 for(i = 0; i <= 60; i++) { //  generate some data 
  for(j = 0, u2 = u2min; j <= 50; j++) 
  { 
   y = pi*cmplx(u1,u2)/(2.*K); 
   ctemp = 1. -4.*q*(1.-2.*q)*cos(y)*cos(y); 
   ftemp = abs(sin(y)*(1. -4.*q*q*cos(y)*cos(y))/ctemp); 
   if(ftemp > 4.0) Z[i][j] = 4.0; 
   else Z[i][j] = ftemp; 
   u2 += du2; 
   if(u2 > 2*Kprime) u2 -= 2*Kprime; 
  } 
  u1 += du1; 
 } 
 openPlot("JACOBIAN Example");   //  open up plot window 
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 opts3D(1,0,1); 
 conlab3D(16,1,1); 
 colorBar(8); 
 surfil3D(45); 
 confil3D(45); 
 surwir3D(1); 
 xLabel("X-AXIS"); 
 yLabel("Y-AXIS", 1); 
 zLabel("Z-AXIS"); 
 camloc3D(133.2,210.0,20.0); 
 consurf3D(1, Z,u1min,u1max,u2min,u2max); 
 colorB(223,223,223); 
 pCRT(); // Output to the display monitor 
 

 
 

 
 
Note!!  To generate one’s own plot, start off with the code starting with the openPlot(…) line as 
shown below, and including the lines up to and including CRT().  For the matrix array, compute as 
Z[i][j], where the j index goes first, then the i index.  Note that the Z array is just the z-axis values 
looking down on the x/y plane. After displaying the plot, modify by using the customize features. 
 
 openPlot("JACOBIAN Example");   //  open up plot window 
 conlab3D(16,1,1); 
 colorBar(8); 
 surfil3D(45); 
 confil3D(45); 
 surwir3D(1); 
 camloc3D(133.2,210.0,20.0); 
 consurf3D(1, Z,u1min,u1max,u2min,u2max); 
 pCRT(); // Output to the display monitor 
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The Movie Plot 
 
The Movie Plot (movieP) used between an openPlot function call and the pCRT function call for 
multiple x-y plots, where the user desires to see each frame at a set rate.  So instead of plotting a family of 
curves, each data set is plotted to the monitor at the set rate, then erased before the next data set is plotted.  
Because the data is plotted in reverse video, colors don’t work well except on the final curve, where the 
data is plotted in normal mode.  Please note that this mode is for the monitor only. The user should only 
plot continuous curves or points only (refer to function penS). Its prototype is as follows: 

 
int  movieP(int msec, float  delta); 
  
where,  
  
msec  = display update time (on the display monitor) in msec. for each slide.  
delta = time that each slide represents in seconds (in the  
  real world)for reporting purposes. 

 
Note!! The current number of movie plot windows in a given shell script is 10, and you can't mix movie 
plot windows with non-movie plotting windows.  Between 100 and 500 slides per window should handle 
most simulations, although the program can handle more. On the Demo Files under the Plotting tile, run 
Movie Plot, Polyphase Channelizer (movie), and Yet Annother Movie Plot. 

 

Multiple Windows Displayed 
 
When a given shell script executes, there’s two options, namely, window(s) plots and a print file, or just a 
print file.  If just a print file, then that file is displayed in the Window’s WordPad program.  If plotting 
window(s), then the first plot displayed takes up the entire monitor’s screen.  On the menu bar, after the 
Window tile on the main menu, the number of plots are displayed.  Under the Window tile, the user can 
view additional plots with the following commands (depending on the number of plots), namely: 
 

• Close Window                             Ctrl+F4 
• Switch Window Next                  Tab 
• Switch Window Prev                  Tab +Shift 
• Cascade All Windows 
• Tile vertical All Windows 
• Restore All Windows                  Ctrl+R 
• Display 2 Windows Tiled            Ctrl+2 
• Display 2 Windows Horizontal   Ctrl+Shift+2 
• Display 3 Windows Tiled            Ctrl+3 
• Display 3 Windows Horizontal   Ctrl+Shift+3 
• Display 4 Windows Tiled            Ctrl+4 
• Display 4 Windows Horizontal   Ctrl+Shift+4 
• Display 5 Windows Tiled            Ctrl+5 
• Display 5 Windows Horizontal   Ctrl+Shift+5 
• Display 6 Windows Tiled            Ctrl+6 
• Display 6 Windows Horizontal   Ctrl+Shift+6 
• Display 7 Windows Tiled            Ctrl+7 
• Display 7 Windows Horizontal   Ctrl+Shift+7 
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• Display 8 Windows Tiled            Ctrl+8 
• Display 8 Windows Horizontal   Ctrl+Shift+8 
• Display 9 Windows Tiled            Ctrl+9 
• Display 9 Windows Horizontal   Ctrl+Shift+9 
• Display 10 Windows Tiled          Ctrl+A 
• Display 10 Windows Horizontal Ctrl+Shift+A 
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Chapter 7 – User Dialog’s and Menus 
 
 

 The Generic Dialog Procedure 
 

The user, programming at the Shell level, can call a dialog procedure to allow the input of numeric 
quantities, user selectable flags, and a file name (for input).  In particular, up to 14 floating point values 
can be specified, 3 groups of up to 6 exclusive flags (1 only from each group), an additional 10 flags in a 
separate group (bit or’ed), along with a file input/output name which includes a path specification.  The 
user can also supply a help file which can be called up from the dialog procedure.  The prototype 
specification for this internal callable module is as follows: 
 

 
  Syntax vector  dialog(int nd, int n1, int n2, int n3, int n4, int nf, 
                        char *Titles, int * buttons, char *FileName) 

   
where, 

   nd = number of data entries fields (boxes), 14 max 
   n1 = number of Group 1 buttons, 6 max  
   n2 = number of Group 2 buttons, 6 max  
   n3 = number of Group 3 buttons, 6 max  
   n4 = number of Group 4 check boxes, 10 max  
   nf =  1 for a file input selection, = 0 for none 
   Titles = character titles for the Dialog entry, the data entry 
             fields, the Group 1 buttons, the Group 2 buttons, the Group 3 
             buttons, and the Group 4 check boxes. 
   buttons = an integer array of size 4 that holds the Group 1->4 
              option selections (an output). 

FileName = character array of size 81 to hold file name and path if 
           nf = 1 (an output).  

  Returns: 
   A real vector where each vector element is a value from a  
   data entry field. 
  Remarks: 
   Note that labels is a sequential array of ASCII text titles that cover the 
   Dialog box title, then up to the 14 data fields, followed by the Group1, 
   Group2, Group3 buttons group, and finally by the Group 4 check boxes. 
   The value returned from the group 1->3 buttons group will range from 1--> 6, 
   while the value returned from the Group 4 check box group will be a bit or’ed 
   value, with the first check box having a value of 1, thr second 
   check box having a value of 2, etc.. 
 

An example from the shell script file AllPassRec  is as follows: 
 
  char *Labels[] = { "Recursive All-pass Filter Design",  

"Prototype Order (Odd)", "Stopband Edge (.25->.5)", 
  "Passband Edge","Center Frequency","Order (2 or 4)", 
  "Low-pass", "Band-Pass","High-Pass", "Stop Band" }; 
  int button[4];   // storage for group button entry values 
  vector R;    // storage for data entry values 
  char FileName[81]; // storage for file path and name 
 
  R = dialog(5, 4, 0, 0, 0, 0, Labels, button, FileName); 
  N = R[0]; // value from 1st data entry field 
  ws = R[1]; // value from 2nd data entry field 
  wb = R[2]; // value from 3nd data entry field 



               106 

  wc = R[3]; // value from 4th data entry field 
  kk = R[4]; // value from 5th data entry field 
  type = button[0]; // value from Group 1 button group 
  // button[1] would be value from Group 2 button group 
  // button[2] would be value from Group 3 button group 
  // button[3] would be value from Group 4 button group 
  // Filename[81] would be file name if nf = 1  

 
Note that the appearance of the dialog will depend on the amount of input parameters and flags requested.  
Up to 48 different dialog templates are available, and are selected at run time.  The dialog for the above 
shell script AllPassRec.txt  will appear as follows: 
 
 

 
 
 Figure 7.1 
 

Note that the Help button has been grayed out.  If the user had prepared a help file (in the same sub-
directory) with the name of AllPassRec.doc, then the Help button would be active, and the user would be 
able to call up and display help information by depressing that button.  Also note that this procedure 
keeps track of input values from a given design session to the next, by storing these values in file 
AllPassRec.ini. 
 
Another dialog procedure at the user level is the IIR Digital Filter Design module.  This module can be 
launched from Slide-Rule’s Main Menu, MyDialogs/IIR Digital Filter Design…, or by executing the shell 
script file iirDFD.txt in sub-directory digitalF.  The dialog for this procedure appears as follows: 
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 Figure 7.2 
 
 

 User Menus 
 

Referring to Figure 2.1, we note that on the Menu Bar, there are tile entries Dialogs, Plotting, 
FilterDesign, Math, etc...  These are user generated menus that allow the user to attach shell script files 
on a popup menu that can be either launched into the Compiler/Interpreter for execution, or into the 
Custom editor for editing and subsequent execution.  Up to 12 main Menu Title entries are allowed, and a 
total of up to 300 user shell scripts files may be attached to any of the user defined Main Menu Tiles.  
This allows the user an alternate and quick method to access shell script procedures as apposed to 
launching these scripts by going through a file dialog procedure from the main Shell Menu procedure as 
covered in Chapter 2.  These entries are attached to the main menu bar, when Slide-Rule is first executed.  
The user may create a new Menu file or select an existing menu file by bringing up the dialog procedure 
User Menus Selection… under the Main Menu Tile ConFig.  This dialog procedure is shown in Figure 
7.3 below. 
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 Figure 7.3 
 

Note in Figure 7.3, that the current User Menu selected is Demos.mnu, a file stored in the root directory 
(c:\SlideRule).  In order to select a different set of menu tiles, depress the Click for File Menu Selection 
push button.  Then make a file selection under the entries of *.mnu.  After making a file selection, the 
dialog procedure is terminated, and the new user selected menu will take effect. 
  
To create a new menu specification file, fill in the dialog entry below the Current User Menu Selected, 
then click the New Menu File push button.  Then click or depress the Quit pushbutton and add new 
entries as described below. 
 
To add or modify a menu specification file (*.mnu), use the Open File editor as found under the File tile, 
and select Files of type Menu File (*.mnu).  An example specification file follows: 
 

1 "MyDialogs" "Cubic Spline Interpolation..." "C:\SlideRule\other\splineDialog.txt" 
1 "MyDemos" "Slide-Rule - Front Cover" "C:\SlideRule\plots\hills.txt" 
1 "MyDemos" "Ford Circles Demo" "C:\SlideRule\plots\FORDCIRC.TXT" 
1 "MyDemos" "Vector Plot" "C:\SlideRule\plots\vector.txt" 
1 "MyDemos" "Polar Plots" "C:\SlideRule\plots\apolar.txt" 
1 "MyDemos" "Hogenauer Filter Plots" "C:\SlideRule\plots\cubicX.txt" 
1 "MyDemos" "More Polar Plots" "C:\SlideRule\plots\polar1.txt" 
1 "MyDemos" "Symbols Plot" "C:\SlideRule\plots\SYMBOLS.TXT" 
1 "MyDemos" "Fractal Plot" "C:\SlideRule\plots\fern.txt" 
1 "MyDemos" "Jacobian Plot" "C:\SlideRule\plots\jacob2.txt" 
1 "MyDemos" "Bessel Functions" "C:\SlideRule\plots\besseljn.txt" 
0 "MyScripts" "Sample 2nd Order ODE" "C:\SlideRule\diffeq\sysode.txt" 
0 "MyScripts" "Runge-Kutta-Fehlberg ODE" "C:\SlideRule\diffeq\rkf45Test.txt" 
0 "MyScripts" "Solution to Van der Pol's Equation" "C:\SlideRule\diffeq\VanderPol.txt" 
1 "MyDemos" "Histogram Plot" "C:\SlideRule\plots\histo.txt" 
1 "MyDemos" "Interpolated FIR (IFIR)" "C:\SlideRule\digitalf\INTERP.TXT" 
1 "MyDemos" "FFT Window Functions" "C:\SlideRule\specanal\FFTWIN.TXT" 
1 "MyDemos" "Demo of Circular Functions" "C:\SlideRule\mathfunc\cirfuncs.txt" 
1 "MyDemos" "Demo of Hyperbolic Functions" "C:\SlideRule\mathfunc\hyperbolicfuncs.txt" 
1 "MyDemos" "Demo of log10 function" "C:\SlideRule\mathfunc\log10.txt" 
1 "MyDemos" "Log & Exp functions" "C:\SlideRule\mathfunc\logexpfunc.txt" 
1 "MyDemos" "Some Sin Waves" "C:\SlideRule\mathfunc\SCURVES.TXT" 
1 "MyDemos" "Power curves" "C:\SlideRule\mathfunc\powfunc.txt" 
1 "MyDemos" "ODE error analysis" "C:\SlideRule\diffeq\ODEsTest.txt" 
1 "MyDemos2" "Meteor FIR Filter Design" "C:\SlideRule\digitalf\MD003.TXT" 
1 "MyDemos2" "CIC Comb Impulse Response" "C:\SlideRule\digitalf\trunc.txt" 
1 "MyDemos2" "Movie Plot" "C:\SlideRule\plots\moviep.txt" 
1 "MyDemos2" "3D Line plots" "C:\SlideRule\plots\plot3c1.txt" 
1 "MyDemos2" "Plot using pminmax" "C:\SlideRule\plots\PMINMAX.TXT" 
1 "MyDemos2" "Polynomial fit to data" "C:\SlideRule\plots\POLY.TXT" 
1 "MyDemos2" "MATLAB cover" "C:\SlideRule\plots\membrane.txt" 
1 "MyDemos2" "3D - demo" "C:\SlideRule\plots\orbits.txt" 
1 "MyDemos2" "3D - demo plot" "C:\SlideRule\plots\tampani.txt" 
1 "MyDemos2" "Some Polar plots" "C:\SlideRule\plots\polar5.txt" 
1 "MyDemos2" "Bessel functions I0,I1,K0,K1" "C:\SlideRule\specmath\BESSELIN.TXT" 
1 "MyDemos2" "Bessel function Jn" "C:\SlideRule\specmath\BESSELYN.TXT" 
1 "MyDemos2" "Beta function" "C:\SlideRule\specmath\BETA.TXT" 
1 "MyDemos2" "Incomplete Beta function" "C:\SlideRule\specmath\BETAI.TXT" 
1 "MyDemos2" "Chebyshev polynomials" "C:\SlideRule\specmath\chebyshevpoly.txt" 
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1 "MyDemos2" "Elliptic Integral 1st kind" "C:\SlideRule\specmath\ELLIPTC.TXT" 
1 "MyDemos2" "Jocobian Elliptic function" "C:\SlideRule\specmath\ELLIPTJN.TXT" 
1 "MyDemos2" "Elliptic Integral 2nd kind" "C:\SlideRule\specmath\ELLIPTS.TXT" 
1 "MyDemos2" "Plots of error function - erf" "C:\SlideRule\specmath\ERF.TXT" 
1 "MyDemos2" "plot of Gamma function" "C:\SlideRule\specmath\GAMMA.TXT" 
1 "MyDemos2" "Plot of Incimplete Gamma function" "C:\SlideRule\specmath\GAMMAP.TXT" 
1 "MyDemos2" "Jacobi Orthogonal Polynomials" "C:\SlideRule\specmath\jacobipoly.txt" 
1 "MyDemos2" "Legendre Orthogonal Polynomials" "C:\SlideRule\specmath\legendrepoly.txt" 
1 "MyDemos2" "Another Movie Plot" "C:\SlideRule\digitalf\HARRIS3.TXT" 

 
Note that column one specifies the execution option, i.e., “1” to execute, and “0” to launch into the 
Custom Editor.  The second entry is the Menu Tile label, while the third entry is the Popup Menu Tile 
label.  The last entry is the full path and file name of the shell script file. Note that the entries can be in 
any order, except the menu tile names are ordered from left to right as “first come, first selected”.  After 
editing is complete, go to the User Menu Selection dialog procedure under the Config tile, and select the 
specification file. 
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 Chapter 8 - Digital Filter Design 
 

 Introduction 
 
Digital filters can be considered the backbone of Signal Processing, and as such this chapter will go 
through several design examples for the different type of digital filters that can be can implemented in this 
software. 
 

 FIR Filter design using the Parks-McCellan Design Procedure* 
 

The Parks-McCellan algorithm was developed by Parks and McCellan at Rice University, and is based on 
minimizing the error of the alternation theorem in the Chebyshev sense.  A large part of the algorithm was 
based on a paper (in 1956) by Russian mathematician Remez.  Accordingly, the algorithm converges to 
produces equal ripple in the pass band and stop band.  For this software implementation, the Fortran 
software was downloaded from Netlib, and converted to C.    Modifications were made to handle up to 
2000 taps; an input parameter to taper the stop band in db/octave; and a parameter to up tilt the pass band 
with (sin(x)/x)N, such that the filter can be convolved with a Cascaded Integrated Comb (CIC) filter.  
Accordingly, we continue with a few specific design examples. 
 
Design a low pass FIR filter with a pass band edge at 1000 Hz, a stop band edge at 1500 Hz, a pass band 
ripple of 0.25 dB, a stop band rejection of 60 dB with a -4.5 dB rolloff, and a sampling frequency of 
10000 Hz.  Before we start, we need to check if were in the correct sub-directory by checking the info tile 
under the File tile.  Having done that, first go to the Filter tile, then select Parks-McCellan… and 
Estimate…, and observe the following dialog box. 
 

 
 

                                                 
* [2] pp 464-488, [8] pp 678-699 
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Upon selecting the Okay button, were presented with a second dialog box as show below. 
 

 
 
 
After filing in the stop band taper at -4.5 dB, were presented with four plots, namely 

1) A magnitude plot 
2) A magnitude dB plot 
3) An Impulse response plot 
4) A Step response plot 
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From the Magnitude dB plot, we notice by doing a zoom on the first side lobe, that it’s about 0.7dB short 
of the -60 dB stop band spec.  So we can go straight to the Parks-McCellan… Design… dialog and add 
say a couple of taps (51 ->53) to redo the design.  We can also modify the stop band taper if desired.  
Note that the design parameters are remembered from the previous iteration.  Note also that the shell 
script file name can also be changed.  If we rubber band the pass band a couple of times, we note that the 
pass band ripple spec is met, and that at 1000 Hz, the reading is down to less than -0.125 dB.  Note under 
the Filter tile, that the entry FIR Nominal gain of 1 is checked.  This specifies that the ripple in the pass 
band is equally above and below zero dB.  This can be changed to FIR Maximum gain of 1, i.e., zero dB, 
such that the ripple doesn’t poke its head above that level. You can change to this setting by checking the 
tile and re-run the shell script to verify.  Now if we depress the function F12 key, will get a print out as 
shown below. 

    FINITE IMPULSE RESPONSE (FIR) 

LINEAR PHASE DIGITAL FILTER DESIGN 
    REMEZ EXCHANGE ALGORITHM 
       PASSBAND/STOPBAND 
 
       FILTER LENGTH = 53 
****** IMPULSE RESPONSE ****** 
******    H(z) = B(z)   ****** 
 
B(000) = -3.87110317e-04 = B(052) 
B(001) = -1.77492760e-03 = B(051) 
B(002) = -3.09713718e-03 = B(050) 
B(003) = -3.91905708e-03 = B(049) 
B(004) = -3.15436826e-03 = B(048) 
B(005) = -4.42114878e-04 = B(047) 
B(006) =  3.42777324e-03 = B(046) 
B(007) =  6.49455149e-03 = B(045) 
B(008) =  6.48010009e-03 = B(044) 
B(009) =  2.26297850e-03 = B(043) 
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B(010) = -4.92352995e-03 = B(042) 
B(011) = -1.14302503e-02 = B(041) 
B(012) = -1.27814534e-02 = B(040) 
B(013) = -6.33405934e-03 = B(039) 
B(014) =  6.36904278e-03 = B(038) 
B(015) =  1.92257202e-02 = B(037) 
B(016) =  2.39819763e-02 = B(036) 
B(017) =  1.47471893e-02 = B(035) 
B(018) = -7.57982579e-03 = B(034) 
B(019) = -3.35928232e-02 = B(033) 
B(020) = -4.80220045e-02 = B(032) 
B(021) = -3.61987984e-02 = B(031) 
B(022) =  8.38558745e-03 = B(030) 
B(023) =  7.92145124e-02 = B(029) 
B(024) =  1.57422083e-01 = B(028) 
B(025) =  2.18347721e-01 = B(027) 
B(026) =  2.41331305e-01 = B(026) 
 
        Freq. F1  Freq. F2   Desired   Weight 
BAND 01 0.000000  0.100000  1.000000  1.000000 
BAND 02 0.150000  0.500000  0.000000  14.400000 

  
Now if we want to get the filter coefficients out for assembly for one’s signal processor or VLSI chip, we 
select Coefficient File Gen… -> FIR… under the Filter tile, and are presented with the following dialog 
box. 

 

 
 

Assuming we want floating point, we first load the FIR coefficients (which will have the same file name 
as the shell script file, but with a .fir extension), then we enter the header and trailer.  Say we want each 
line to have 6 spaces followed by .float, and the trailer to be blank.  This produces the following in 
Notepad, where the user can paste this code in their assembly code. 
 

      .float -3.87110317e-04,-1.77492760e-03,-3.09713718e-03,-3.91905708e-03, -3.15436826e-03 
      .float -4.42114878e-04, 3.42777324e-03, 6.49455149e-03, 6.48010009e-03, 2.26297850e-03 
      .float -4.92352995e-03,-1.14302503e-02,-1.27814534e-02,-6.33405934e-03, 6.36904278e-03 
      .float 1.92257202e-02, 2.39819763e-02, 1.47471893e-02, -7.57982579e-03, -3.35928232e-02 
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      .float -4.80220045e-02, -3.61987984e-02, 8.38558745e-03, 7.92145124e-02, 1.57422083e-01 
      .float 2.18347721e-01, 2.41331305e-01, 2.18347721e-01, 1.57422083e-01, 7.92145124e-02 
      .float 8.38558745e-03, -3.61987984e-02, -4.80220045e-02, -3.35928232e-02, -7.57982579e-03 
      .float 1.47471893e-02, 2.39819763e-02, 1.92257202e-02, 6.36904278e-03, -6.33405934e-03 
      .float -1.27814534e-02, -1.14302503e-02, -4.92352995e-03, 2.26297850e-03, 6.48010009e-03 
      .float 6.49455149e-03, 3.42777324e-03, -4.42114878e-04, -3.15436826e-03, -3.91905708e-03 
      .float -3.09713718e-03, -1.77492760e-03, -3.87110317e-04 
 

For fixed binary with a 16-bit two’s complement word, then the most significant bit (15) is -1, bit 14 = .5, 
etc...  Since the largest tap is 0.241331395, if we multiply by 32768 and convert to hex with rounding, we 
get 0x1ee4 as shown below. 

     ,word 0xfff3, 0xffc6, 0xff9b, 0xff80, 0xff99, 0xfff2, 0x0070, 0x00d5 
     ,word 0x00d4, 0x004a, 0xff5f, 0xfe89, 0xfe5d, 0xff30, 0x00d1, 0x0276 
     ,word 0x0312, 0x01e3, 0xff08, 0xfbb3, 0xf9da, 0xfb5e, 0x0113, 0x0a24 
     ,word 0x1426, 0x1bf3, 0x1ee4, 0x1bf3, 0x1426, 0x0a24, 0x0113, 0xfb5e 
     ,word 0xf9da, 0xfbb3, 0xff08, 0x01e3, 0x0312, 0x0276, 0x00d1, 0xff30 
     ,word 0xfe5d, 0xfe89, 0xff5f, 0x004a, 0x00d4, 0x00d5, 0x0070, 0xfff2 
     ,word 0xff99, 0xff80, 0xff9b, 0xffc6, 0xfff3 
 

To get more precession for a fixed point FIR filter, we select Fixed Full.  Since the center tap is = 
0.241331395, we divide into 0.5 to get 2.07184061.  We multiply all the coefficients by this factor to get 
the center tap = 0x7fffe which is ~0.5.  We see the unity gain scale factor that needs to be applied after the 
FIR filter is run, is 1ee3 or 0.241331 

// Scale Up Factor = 0.241331 
     .data 0xffcb, 0xff0f, 0xfe5b, 0xfdec, 0xfe54, 0xffc4, 0x01d1, 0x0372 
     .data 0x0370, 0x0133, 0xfd64, 0xf9f0, 0xf939, 0xfca4, 0x0361, 0x0a32 
     .data 0x0cb8, 0x07d2, 0xfbfb, 0xee2f, 0xe688, 0xeccd, 0x0473, 0x2a03 
     .data 0x537d, 0x73cd, 0x7ffe, 0x73cd, 0x537d, 0x2a03, 0x0473, 0xeccd 
     .data 0xe688, 0xee2f, 0xfbfb, 0x07d2, 0x0cb8, 0x0a32, 0x0361, 0xfca4 
     .data 0xf939, 0xf9f0, 0xfd64, 0x0133, 0x0370, 0x0372, 0x01d1, 0xffc4 
     .data 0xfe54, 0xfdec, 0xfe5b, 0xff0f, 0xffcb 
     .data 0x00001ee3  // Unity Gain Scale Factor at B15 

 

FIR Half-band Filters* 
 
Half-band filters are restricted to having their impulse response to have all but one of the even indexed 
samples equal to zero.  This design procedure employs the technique as stated in the footnote reference to 
force the odd taps to zero.  So we will design a half-band filter with a cutoff at 2000Hz, a stop band 
rejection of 60 dB, and a sampling rate of 10000 Hz.  We should see an odd number of taps; a magnitude 
dB value of -6dB at the quarter sampling rate (2500 Hz); the center tap impulse response of 0.5; and all 
the odd impulse response coefficients (or taps) equal to zero. The advantage of Half-band filters is that we 
can design filter structures that are fast, since every other tap is zero except one.  Below are some plots for 
this design example. 

 

                                                 
* [6] pp 207-210 
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 The Hilbert Transformer* 
 

                                                 
* [8] pp 693-699 
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A Hilbert transformer can be considered as a filter with unity gain and a phase shift of approximately 90 
degrees at all frequencies.  These filters are useful in processing narrow band signals where a complex 
quadrature component of a real signal shifted 90 degrees from the real input signal is required.  Routine 
hilbert.txt as found in the specanal sub-directory illustrates this technique.  Below is a block diagram of 
the system. 
 

Hilbert Transformer
  N = 53 TAPS

X = sin(phi) Xd

Y

Tap Delay Line
 of 26 Taps

 
 
 
We note that for a Hilbert Transformer of N Taps, that the delay is (N-1)/2 taps.  Therefore the tap delay 
line in the top block is set at 26 taps. We then program a shell script to generate a sin wave with shell 
script signal.txt and output as signal.dat.  This signal has the following properties: Frequency = 1000 Hz; 
Sample Freq. = 24000 Hz; DC offset = 0; Peak Amp. = 1; Phase offset = 0 degrees.  We then design a 
Hilbert transformer under Parks-McCellan with a sample frequency of 24000 Hz, a stop band rejection of 
70 dB, and a pass band cutoff of 1000 Hz.  We generate another signal (signald.txt) as above except we 
want the signal delayed 26 samples which works out to a phase shift of 345 degrees.  This will emulate 
the tap delay line in the upper block.  Go execute the shell script hilbert.txt in sub-directory specanal and 
observe the plots as shown below. 
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 FIR Differentiators* 
 

The FM signal we receive on our car radio can be characterized by the following equation: 
 

 

FM A w t w t
where
A

SIG C c

c

= +cos( ( ))
,

β

β

 =  Amplitude Factor
w =  carrier frequency (rad / s)

 =   beta factor
w(t) =  original signal

c

 

 
We want to develop an example that illustrates the use of the Differentiator in the Parks McCellan FIR 
filter design procedure.  In a typical FM receiver, we heterodyne the signal down to an intermediate 
frequency or IF frequency. At this point, let’s insert a digital demodulator which will consist of an A/D 
sample and hold circuit, a 16-bit imbedded signal processor, and a DAC circuit.  A typical block diagram 
of the system is as follows: 
 

                                                 
* [8] pp 691-693 
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Mixer
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Input
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Local

Oscillator

RF Filter

IF Amplifier

A/D
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456 KHz
IF Signal

Signal
Processor DAC

To Audio
Speaker(s)

2nd Stage IF

RF Signal

 
Now, lets insert an anti-aliasing filter (band pass) after the 456 kHz signal and before the A/D sample and 
hold.  Now if we sample the signal at 96 KHz, then we can say that the signal is at 24 KHz ( 5*96 -456).  
In this operation, will employ at trick, i.e., we will sample at 96 KHz, and run a quadrature down 
sampling filter, such that we produce I and Q samples at base band (at 24 KHz samples/sec.).  The 
original 456 KHz signal will be centered at DC. In a real world implementation, this would be followed 
by a Low Pass filter to remove noise and spurious signals.  At this point we need to demodulate the 
signal.  Recall that, 
 

( )

22SIG

1

SIG

Q + I
QdI/dt-IdQ/dt  =FM  therefore

I
Qtan  where,

,FM

⎟
⎠
⎞⎜

⎝
⎛=Ω

Ω=

−

dt
d

 

 
The dQ/dt and dI/dt terms in the above equation can be implemented by passing the I and Q data streams 
through a differentiator filter as designed under the Parks McCellan FIR filter design method.  The basis 
for these (identical) filters is:  type is differentiator; cutoff frequency is 8 KHz; sample frequency is 24 
KHz, %peak relative error of 0.1.  The characteristics of this filter are shown below. 
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Since the delay of the differentiator filter is 15/2, or 7 taps, then the center Tap of each filter is time wise 
in sync with the output of the filter.  The block diagram of the FM demodulator is as follows: 
 

Differentiator
 Filter

Differentiator
 Filter
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Flter
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.
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.
Q
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Below is a plot of the demodulated test signal along with a magnitude plot of this signal in the frequency 
domain. 
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 MaxFlat FIR Design 
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The MaxFlat FIR filter design procedure can be found under the Filter Tile under the main menu.  The 
reference for this technique can be found in [5].  The design technique gives coefficients for a maximally-
flat pass and stop band symmetric FIR low pass filter with an odd number of terms.  Find below plots as 
an example of the output of this design procedure. 
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 Windowed FIR Design 
 

The FIR windowed design procedure is the classic design technique that is covered in every introductory 
course in signal processing.  It comes with an estimate dialog procedure.  This procedure includes Low 
pass, High pass, Band pass, and Band stop designs, along with window types of Rectangular, Tapered 
Rect., Triangular, Hanning, Hamming, Blackman, and Kaiser.  Find below plots as an example of the 
output of this design procedure.  Note, that the design parameters are:  Passband ripple = 0.2 dB; 
Stopband Rej. = 50 dB; Passband (Ideal) = 1000 Hz; Stopband (Ideal) = 2000 Hz; and a sample frequency 
of 10000 Hz.  Note that the Filter is down -6 dB at 1500 Hz, which is the midpoint between the ideal 
passband specification and the stopband specification.  Consult the Function reference (F7->Spectral 
Analysis->kaiserWin) for documentation.  
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* [1] pp 205-292, [8] pp 701-735, [2] 415-438 

IIR Filter Design* 
 

The IIR design procedure is a classic IIR design procedure than employs the bilinear transform to 
transform analog prototypes in the s-domain to the z-domain.  This procedure covers Low pass, High 
pass, Band pass, and Band stop designs of the Chebyshev I, Chebyshev II, Butterworth, and Elliptic 
types.  The procedure covers only cascaded bi-quad sections. Note that on any given design, the gain in 
each bi-quad is adjusted such that the maximum gain at any frequency is 1.  The bi-quad sections are also 
ordered form least Q to increasing Q per filter stage.  Also, in any stage, the zeros of the filter are selected 
to be closest to the poles.  The effect of this ordering is to provide the maximum gain and stability to 
fixed point designs.  Included in this procedure is a check box for adding an all-pass equalizer such that 
the group delay in the pass band (low pass designs), is flattened out.  This technique was implemented 
from A.G. Deczky’s paper from reference [5].  Note that there is no estimator dialog procedure.  To 
increase or decrease the gain of the filter, simply raise or lower the number of bi-quad sections.  Find 
below plots of a butterworth low pass design (3 bi-quads) with 3 all-pass bi-quad sections added to 
smooth out the group delay.  Also shown is the group delay without the all-pass equalizer.  Note that the 
Fortran code (for the all pass filters) of reference [5], was downloaded from Netlib, converted to C-code, 
and modified and striped to integrate with this software. 
 
 
 

10

0

-10

-20

-30

-40

-50

-60

-70

-80
5000450040003500300025002000150010005000

FREQUENCY - Hz

Magnitude dB

M
A
G
N
I
T
U
D
E
 
D
B

Passband ripple flat

3 dB down at passband cutoff

11

10

9

8

7

6

5

4

3

2

1

0
5000450040003500300025002000150010005000

FREQUENCY - Hz

Butterworth Group Delay (3-bi-quads)

S
A
M
P
L
E
S

 
 
 



  123 

30

25

20

15

10

5

0
5000450040003500300025002000150010005000

FREQUENCY - Hz

Group Delay with All-pass equalizer (6 bi-quads)

S
A
M
P
L
E
S

    

Im[z]

Re[z]

Pole Zero Plot  
 

Interpolated FIR (IFIR) Filters* 
 

Under the Filter tile on the main menu, we have a design procedure for designing Cascaded Interpolated 
FIR filters (IFIR).  The rationale for this is to design a first stage transversal filter, where each delay 
element z−1 is replaced by k delay elements, equivalent to z-k as shown in the block diagram below.  This 
is equivalent to inserting k-1 zeros between the original filter coefficients of F(z).  Since we’re now 
violating Nyquist, we have k-1 unwanted images.  We can solve this problem by following the first filter 
F(z-k) by a second filter H(z), to filter out the un-wanted images.  We do this by incorporating the meteor 
FIR design module which will be covered in another section.  Please note that each filter is run at the 
Nyquist rate. Note the tap delay line of F is k times the filter length of F, but when we run this filter, we 
grab every kth sample in the tap delay line.  Note that the SOFTWARE figures out the inputs to the 
Meteor FIR design program. Note that if there is ripple is the interpolating filter, that this can cause a 
problem when we convolve it with the zero inserted model filter.   
 

F(z^k) H(z)
x(n) y(n)

 
 

In order to illustrate this technique, we’ll design a band pass filter with the following specifications:  
Pass band ripple = 0.5 dB; Stop band rejection = 45 dB; Stop band edge = 52.1 KHz; Pass band 
edge = 52.6 dB; Pass band width = 1 KHz; Sample frequency = 200 KHz; Interpolating factor 
equals 8. 
 
 
 
 
 
 
 

                                                 
* [6] pp 370-383,  [7] pp 134-140 
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 Raised Cosine Filter Design 
 
In communication systems one frequently used H(n) transfer function belonging to the Nyquist class (zero 
ISI at the sampling times) is called the raised-cosine filter.  For a reference, refer to [10], pp. 139-142.  
Two types of FIR design methods are offered, namely the classic formula method, and the 6-dB harris 
method.  The harris technique will be covered in the Root Raised Cosine Filter Design section.  In order 
to design this classic pulse shaping filter, we need the symbol rate, the sample rate, the roll-off factor, and 
the number of taps.  The sample rate is generally four (4) or eight (8) times the symbol rate, the roll-off 
factor varies from 0 <= 1, and the number of taps is always odd and a multiple of the taps per pulse width 
-1 (the user picks this value).  Below are a couple of plots showing the output of this design technique.  
Note that the impulse response of this filter has unity gain.  When used as shaping and up sampling filter, 
as implemented in a transmitter, we re-scale these coefficients to have unity peak gain (i.e., we re-scale 
the coefficients such that the largest coefficient has a value of 1. Refer to [6], p 89. 
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 Root Raised Cosine Filter Design 
 
The SQRT-Nyquist filter is used in communication systems, usually one at the transmitter and one at the 
receiver.  If we convolve two of these filters (one a copy of the other), then we have the Raised Cosine 
filter as discussed in the previous section. Two types of FIR design methods are offered, namely the 
classic formula method, and the 3-dB harris method (refer to [6], pp. 91-97).  The harris method, as 
covered in [6], basically iterates on the Remez (Parks McCellan) algorithm to transform an initial low 
pass filter to the SQRT-Nyquist spectrum with the specified roll-off while preserving the specified pass 
band and stop band ripple.  Below is an example of this ingenious design method. 
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Meteor Filter Design 
 

The Meteor FIR design program is based on finding a filter which satisfies upper and lower limit 
specifications, and then finding the shortest filter length which allows the constraints to be met, and then 
finding the filter of that order which is farthest from the upper and lower constraint boundaries in a min-
max sense.  The simplex algorithm for linear programming is used to find the best linear-phase FIR filter 
of minimum length, as well as to find the minimum feasible length itself.  Refer to reference [9]. 
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The first specification for the user upon being presented the Meteor dialog box procedure is to fill in the 
shell script name.  The next item is the filter sample rate entered in KHz.  The user then selects the even 
radio button for an even number of coefficients, else the odd radio button for an odd number of Taps. 
Meteor will search from between 256 TAPS (even) or 255 TAPS (odd), down to 2 or 1 TAPS for the best 
fit to the specifications.  This is followed by selecting either the Symmetric radio button (symmetric 
coefficients, cosine model), or Non-Symmetric (odd symmetric coefficients, sine model).  The symmetric 
option should be used for most designs, while the non-symmetric option should be used for differentiator 
designs.  The next specification can be of two types, namely limit specifications, or concavity 
specifications.  Limit specifications have two parts, an upper(+) spec., and a lower(-) spec.  For now, let’s 
design a simple low pass filter with the following specs: 
 
Shell Script Name = MD001; Taps to be even; symmetric design; 8 KHz sample rate; 2 limit specs;  
Pass band from 0 to 2 KHz; stop band from 2.5 KHz to 4 KHz; ripple in pass band from 1.05 to 0.95 on 
linear scale; a 60 dB stop band attenuation;  Note that when we say not-hugged, we mean to get as close 
as possible, but not necessary touching that spec, while hugged means right on.  Notice also, that in the 
second specification (starting in the 3rd row, that we specify the upper bound as a log value (-60 dB), 
while the lower bound is linear (0)). 
 
 

limit 
spec 

concavity 
spec 

log linear not-
hugged 

hugged Freq. 
Lower 

Freq. 
Upper 

Attn. 
Lower 

Attn. 
Upper 

x   x x  0 2 1.05 1.05 
x   x x  0 2 .95 .95 
x  x  x  2.5 4 -60 -60 
x   x x  2.5 4 0 0 

 
 
We now open up the Meteor Dialog procedure, and enter the Shell Script Name, the sample rate of 8 
KHz, symmetric design, even number of coefficients, and limit spec.  We then enter the first limit spec 
which consists of the first two rows of the table above.  At this point we click the Add Spec Tile, and note 
that the Total Specs window is 1, the Spec Number is 1, and the Specification File title “Click for File 
Input” has changed to “MD001.dat”.  At this point we have a specification file on disk minus the last limit 
spec.  We now enter the last two rows in the table above, and again click the Add Spec Tile.  We now 
have a complete specification file and are ready to proceed with the design by hitting the Okay button, 
except for checking the specification file for accuracy.  Depress the down scroll button next to the Spec 
Number to display the first limit spec.  Check against the table including log, linear, not-hugged, and 
hugged.  If an error, correct, then click the Modify Tile.  Then repeat procedure on limit spec number 2 by 
depressing the up scroll bar (next to Spec number).  When every thing looks AOK, depress the Okay 
button to start the design.  Below are some plots showing the some of the output plots produced.  Please 
note that the Shell Script file name is MD001.txt, the Specification file is MD001.dat, the print output file 
is MD001.prn, and the file containing the FIR coefficients is MD001.fir.  Please note that the FIR 
coefficients file MD001.fir can be formatted to an ASCII file suitable for inclusion into a file for the 
target CPU or VLSI chip design by using the Coefficient File Gen... dialog procedure. 
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We now want to repeat this design, except that in the pass band we want a concave downward smooth 
slope and passing through -3 dB at the corner frequency.  To do this, we open up the Meteor Dialog 
procedure, click on the Specification File Tile, and select MD001.dat, and note that everything is filled in 
as per the above design.  However, we don’t want to modify that design.  So change the Shell Script name 
to MD002, and depress the Modify Spec Tile.  This will create a new specification file, namely 
MD002.dat  that we can modify and add to.  The specs for this new design are listed in the table below. 
 
 
 

limit 
spec 

concavity 
spec 

log linear not-
hugged 

hugged Freq. 
Lower 

Freq. 
Upper 

Attn. 
Lower 

Attn. 
Upper 

x   x x  0 2 1.0 1.0 
x  x  x  0 2 -3 -3 
x  x  x  2.5 4 -60 -60 
x   x x  2.5 4 0 0 
 x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
 x N.A. N.A. N.A. N.A. 0 2 N.A. N.A. 

 
We note that the first spec has changed from MD001.dat, so we modify and click on the Modify Spec 
Tile to change the specification file.  Now, while still on spec #1, click on the Concavity radio button.  
Since the Freq. Lower and the Freq. Upper are already set, just click on the Add Spec Tile.  The other 
parameters are ignored as listed in the specification table above.  We now have our required 3 
specifications.  Check by moving up and down with the scroll buttons as before.  If ok, click on the Okay 
Tile to start execution of the design. 
 
For a third design, we modify MD002 to MD003 as above, but add a fourth specification to add a zero at 
a frequency of 3 KHz.  The specification in shown in the table below along with plots showing the output 
from these last two design examples. 
 
 

limit 
spec 

concavity 
spec 

log linear not-
hugged 

hugged Freq. 
Lower 

Freq. 
Upper 

Attn. 
Lower 

Attn. 
Upper 

x   x x  0 2 1.0 1.0 
x  x  x  0 2 -3 -3 
x  x  x  2.5 4 -60 -60 
x   x x  2.5 4 0 0 
 x N.A. N.A. N.A. N.A. N.A. N.A. N.A. N.A. 
 x N.A. N.A. N.A. N.A. 0 2 N.A. N.A. 
x   x x  3 3 0 0 
x   x x  3 3 0 0 
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 Hogenauer Filter Design* 
 
 
Introduction 
 
The Hogenauer Filter is used for large up-sampling or down sampling tasks.  Its advantage is it has no 
multiplies, however it has to be implemented in fixed point arithmetic (as explained in the references).  
Because of the large up-sampling or down sampling ratios, it’s normally implemented in digital hardware.  
Since the logic design of the hardware implementation is well known, the purpose of this design function 
is to determine; (1) the size of each of the integrator and comb filter registers; (2) and the number of bits 
that can safely be pruned out from a given register.  These two outputs are determined from the following 
inputs, namely, 

 
1) Whether an up-sampling filter or a down sampling filter. 
2) The up-sampling or down sampling ratio. 
3) The number of cascaded stages 
4) The bit width of the input to the filter (to the LSB side of the filter). 
5) The bit width of the output of the filter (from the MSB side). 
 

 
Based on the above, the outputs are determined in the dialog box without ever pushing the Okay button.  
A section of inputs (5x) has to do with a transversal FIR filter, that would be designed under the Filter 
Menu tile using the Parks-McCellan FIR filter design module.  This filter is a compensating filter, in that 
it allows one modify the pass band with a (sin(x)/x )K uptilt, where K is the number of stages in the CIC 
or Hogenauer Filter.  This compensation allows us to generate a relative flat pass band.  In addition, this 
filter can also be an up-sampler or down-sampling filter.  The purpose of these inputs is to allow an 
overlay plot of the CIC filter with the FIR filter.  Included in the plots when the Okay button is depressed 
are, 
 
 (1) Overlay of FIR and CIC in magnitude dB. 
 (2) A pole-zero plot. 
 (3) A magnitude plot of each of the integrator outputs. 
 (4) A magnitude plot of each of the comb register outputs 
 (5) A magnitude plot of the filtered output. 

                                                 
* [6] pp 323-367, [11], [[12] pp 397-487 
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Note that the outputs from the integrator and comb resisters and the filtered output plot at the designated 
bit width are done in a fixed point simulation, such that if a given register is too small, then it will show 
up in the output plots.  
 
The design module also allows one to select one of seven inputs to the simulated filter, namely. 
 
 (1) A sin wave at the level of the input register to the filter 
 (2) An impulse. 
 (3) A plus step  
 (4) A plus minus step. 
 (5) A plus minus plus step. 
 (6) A plus minus plus minus step. 
 (7) A plus minus plus minus plus step 
 
Below is the dialog box that the user is presented with when selecting the Hogenuer Filter… tile under 
the Filter tile on the main menu. 
 
 

 
 

The dialog procedure for this design requires the following entries: 
 
Shell Script File.   Enter a file name for this design procedure.  Note!  Important!!  This value is 
remembered between design sessions so a user can easily change individual parameters within an overall 
design without retyping in this parameter.  So if starting a new design, be sure to modify this parameter so 
as not to wipe out an old design!! 
Up Sample/Down Sample check buttons.  Click one of these boxes depending if an up-sample filter or a 
down-sample filter. 
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Register bit width In.  Use the up/down vertical scroll buttons to set the bit-size of the data path into the 
filter.  The range is from 6 to 18-bits. 
Up/Down Count.   Use the vertical scroll buttons to set the up or down sample ratio.  The range is from 2 
to 1000. 
Num. of Sections.  Use the vertical scroll buttons to set the number of cascaded sections. The range is 
from 1 to 5. 
Register bit width out.  Set this valve using the vertical scroll buttons.  The range is from 8 to 16 bits.  
This parameter affects the filter output plot. 
Comb/Integrator bit widths.   These values are calculated when ever a specification is changed in the 
Specs control group.  However, you can change individual values.  These valves are remembered between 
different design sessions.  Note!  The values displayed are the correct values for a given design.  You can 
change a given value to see what the effect would be, but use the initial values in a real world design!! 
Comb/Integrator pruning lengths.   These values are set to zero when ever a specification is changed in 
the Specs control group.  If an up sampling CIC, they are set to zero (since there’s no pruning on an up 
sample filter).  For a down sampling CIC, they are set to the maximum bit growth of the filter, minus the 
bit growth of each integrator or comb filter, when the Calculate Pruning Bits button is depressed.   
These values can be set individually, by entering a value in the appropriate box. These valves are 
remembered between different design sessions.  The bit growth of the filter is given by, 

 value.comb diff.  M ratio, sampledown  R stages, of num.N  where)),(2logceil(N max ==== RMB
 
Signal Input Specs.  Check one the four boxes to simulate an input signal to simulate the design. 
 
 
 
 
Passband KHz.    The pass band in KHz of the FIR shaping filter.  This value is used in the Magnitude 
dB plot to determine aliasing levels.  Note!  The FIR shaping filter is designed using the Parks McCellan 

design module with the pass band up-titled by 
N

x
x

⎟
⎠
⎞

⎜
⎝
⎛ )sin(

, where N equals the number of cascaded 

sections of the CIC filter. 
Stopband KHz. The stop band in KHz of the FIR shaping filter. 
Passband ripple (dB).   The pass band ripple of the FIR shaping filter. 
Stopband Rejection (dB).   The stop band rejection of the FIR shaping filter. 
Sample freq. KHz.  The sample frequency of the FIR shaping filter. 
Calculate Pruning Bits.  This button will calculate the pruning lengths for each of the individual 
integrator and comb filter register lengths as described above. 

 
Accumulator Bit Widths for a Down-Sampling Filter 

 
The gain through a CIC or Hogenauer filter is given by eq. 11-18 of reference [6], 

 
stages ofnumber  K   filters, comb oflength  ==

=
M

MGain K
 

For a Down-sampling Hogenauer Filter, we can prune out certain register bit lengths from the LSB side of 
the maximum length register. For a test case, we choose a fourth-stage (K = 4) Hogenauer Filter with a 
comb filter length of 20 (M=20)  From the Noble identify, we can transform a Forth-stage Down-
Sampling Hogenauer filter to a Forth-Stage CIC (Cascaded Integrated Comb) filter as shown in the block 
diagram below. 
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From the CIC filter above, we set up a digital filter with the coefficients at each stage given by, 
 
 vector b, a, B, A; 
 vector b[] = { .05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.05 }; 
 vector a[] = { 1, -1 }; 
 B = { b, b, b, b };  //  four stages, length = 84 
 A = { a, a, a, a }; //  four stages, length = 8 
 
 
Given the gain of the filter as defined above, we first compute the impulse response at each stage of the 
filter.  In going to the next stage, we make the just computed stage a NOP, i.e., we set the last coefficient 
at that filter stage to zero.  For the integrator filters, -1 --> 0, and for the comb filters, -0.05 --> 0.  The 
impulse response at each stage is multiplied by the total gain of the filter as stated above.  From the Gain 
equation above, the total gain of the filter is 160000.  Computing the impulse responses, we have plots of 
the impulse responses at each stage as shown below. 
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From the above and equation 11.23 of reference [6], we compute the Gain from each stage to the output, 
and have, 

24785    1462.4    146.29     20    8.3066    4.4721    2.4495    1.4142           
The equivalent bit growth is calculated as,  

14.6      10.5      7.2     4.3      3.1       2.2      1.3        0.5 
Adding in the noise contributions from each noise source, from equation 11.26 of reference [6],  i.e., 
 3)2(log2 == KBitsAdditional  
We have rounding up to the nearest integer, 

18      14      11      8       7       6       5       4 
For a 16 bit input source, the required registers lengths (in bits) for Integrator-1, Integrator-2, Integrator-3, 
Integrator-4,  Comb-1, Comb-2, Comb-3, AND Comb-4 is, 

34      30      27     24      23      22      21      20 
 

 
 
 
A Typical Schematic for a Down Sampler 
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For M = 20; K = 4; and 16-bit input and output registers, we have integrator 1 at 34 bits, with output 
register at 16 bits, then we have a growth of 34-16 bits which is equal to 218 = 262144.  Since the 
maximum value of the sine signal is 32767, and the total gain is MK = 204, then the maximum signal at 
the output register should be 32767*160000/262144 ~= 20000.  A plot of the sine signal at the output 
register for this case follows. 
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Find below a couple of plots of the 4th stage integrator and comb registers. 
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Design Exercise 
  
You’re given a signal at 100 MHz, and we want to down sample it for modem processing in a high speed 
signal processor.  A CIC filter will be employed in an ASIC, with a 12-bit A/D input and a 12-bit digital 
output.  The digital channel in the signal processor to the modem will have a bandwidth of 25 KHz, with 
a stop band rejection of ~95 dB.  From the above, we choose a CIC filter with K = 4, and M = 500.  This 
means the digital output signal from the CIC filter will be at 200 KHz.  So the signal processor needs to 
further down sample the signal.  Note for a bandwidth of 25 KHz, the pass-band edge is ~ 12.5 KHz.  So 
we specify a down sampling ratio of 8, and employ a FIR polyphase filter.*  From the above, we input the 
parameters into the Hogneauer digital filter dialog as shown below. 

 
 

 

                                                 
* [6] pp 127-149 
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From the above, the bits required from Integ 1, Integ 2, …Comb1, …Comb4 are 46,38,30,23,19,18,17,16,  
Since will be using 4-bit high speed look ahead adders, will clock the A/D input at 100 MHz, and each 
adder at two 100 MHz clock cycles.  The system clock will be a square signal (50 % duty cycle), where 
we clock the input register and each 4-bit adder on the rising edge, and each of the adders on the falling 
edge (which adds in the carry bit generated from the previous rising clock cycle).  We add bits to each 
register to make them modulo 4, and the registers lengths are then 48, 40, 32, 24, 20, 20, 20, and 16 bits.  
This means a total of 55 4-bit fast look adders with a through put rate greater than 100 MHz.  The 
registers, A/D and output register are 2-complement. Running the Hogneauer Filter we have some plots as 
displayed below. 
 
 
 
 
 

10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

-100
8007006005004003002001000

Frequency - KHz

Frequency Response

M
a
g
n
i
t
u
d
e
 
d
B

Baseband Signal Spectral Copies

 
 



  137 

.5

.4

.3

.2

.1

.0

-0.1

-0.2

-0.3

-0.4

-0.5
1614121086420

Frequency - KHz

Frequency Response Composite

M
a
g
n
i
t
u
d
e
 
d
B

Hogenauer Filter Output

FIR Multirate Polyphase Filter

Convolved
Filter OutPut

 
 

Convolution of CIC and Polyphase Filter 
 
 

Filter Response Analysis   
 

Under the previous discussion of IIR Filter Design, we gave an example of a Butterworth design with a 
pass-band edge of 1000 Hz; 3 bi-quads; 3 all pass bi-quad to flatten the group delay in the pass band;  and 
a sample frequency of 10000 Hz.  Assuming we named the shell script file IIRfilter, the 3 files would be 
generated in the current sub-directory, namely, IIRfilter.txt (shell file), IIRfilter.prn (print file), and 
IIRfilter.iir (coefficient output file).  Now the IIRfilter.out output file would look like the following: 
 
6.14379964e-01 -1.55450492e+00 9.99999956e-01 6.31527333e-01 -1.46960394e+00 9.99999601e-01  
6.24159804e-01 -1.156597833+00 9.99999988e-01 6.09096301e-02 1.21819260e-01 6.090963013e-02  
6.74552873e-02 1.34910566e-01 6.74552832e-02 8.28825780e-02 1.65765156e-01 8.2882578027e-02  
1.00000000e+00 -1.55450499e+00 6.143800020-01 1.00000000e+00 -1.46960461e+00 6.31527602e-01  
1.00000000e+00 -1.15659785e+00 6.24159812e-01 1.00000000e+00 -1.03206944e+00 2.75707930e-01  
1.00000000e+00 -1.14298045e+00 4.12801593e-01 1.00000000e+00 -1.40438485e+00 7.35915184e-01 
 
Where the first 3 rows are all the b coefficients, and the next 3 rows are all the a coefficients. The b 
coefficients sequence from left to right are b10, b11, b12, b20, b21, b22, b30, …, b50, b51, b52, b60, b61, b62.  The a 
coefficients similarly would be a10, a11, a12, a20, a21, a22, a30, …, a50, a51, a52, a60, a61, a62.  Now if we go to 
the Coefficient File Gen… dialog procedure for IIR, we get the following dialog procedure. 
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The file produced from this would be as follows: 
 

// Scale Factor at B13 
//  -A2, B2, -A1, B1, B0, NF 
      .data    -5033, 8192, 12735, -12735, 5033, 8191 
      .data    -5173, 8192, 12039, -12039, 5173, 8191 
      .data    -5113, 8192, 9475, -9475, 5113, 8191 
      .data    -2259, 8192, 8455, 16384, 8192, 498 
      .data    -3382, 8192, 9363, 16384, 8192, 552 
      .data    -6029, 8192, 11505, 16384, 8192, 678 
 

Note the full scaling and that the normalizing factor (NF = A0) to effect unity gain in each bi-quad, and also 
the ordering of the coefficients.  This ordering corresponds with the Regular Direct Form II bi-quad as shown 
in block diagram below: 

 

++

+ +

z-1

z-1

b

b
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2

b0 y(n)

w(n-1)

w(n-2)

-a

1

2

x(n)a0

w(n)=-a1w(n-1)-a2w(n-2)+a0x(n)
   y(n) = b0w(n)+b1w(n-1)+b2(w(n-2)

 
We first need to remove the .data portion in the file to make it into an ASCII streams format file (where // 
at the beginning of a line is skipped). Under the File tile on the main menu and Open File for Editing…, 
select file IIRfilter.out under file of type *.out and edit out each .data.  Then select under the Filter tile, 
Filter Response Analysis… and Fixed Pt. IIR…, fill in the dialog box, then note the 7 plots and a print 
out of the poles and zeros of the digital filter, which corresponds to the previous example.  This is quite 
useful when one is trying to determine the filter characteristics of a filter with unknown documentation. 
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Fixed Point Coefficients  
From the previous discussion, it is recommended that the user check the magnitude dB plot when 
generating filter coefficients in fixed point.  For the first FIR filter designed (FIR Filter design using the 
Parks-McCellan Design Procedure), lets generate the fixed point coefficients for at 16-bit signal processor 
or ASIC chip, and lets assume that the accumulator is 32-bits, which gives us plenty of head room against 
an overflow condition.  The FIR coefficients File generation dialog box is shown below. 

 

 
 
 

This dialog procedure produces file LowPassFilter.out with the fixed point coefficients scaled at B15 as 
shown below. 

// Scale Up Factor = 0.241331 
 -53, -241, -421, -532, -428, -60, 465, 882 
 880, 307, -668, -1552, -1735, -860, 865, 2610 
 3256, 2002, -1029, -4561, -6520, -4915, 1139, 10755 
 21373, 29645, 32766, 29645, 21373, 10755, 1139, -4915 
 -6520, -4561, -1029, 2002, 3256, 2610, 865, -860 
 -1735, -1552, -668, 307, 880, 882, 465, -60 
 -428, -532, -421, -241, -53 
 7907  // Unity Gain Scale Factor at B15 
 

If we now go to the Filter response Analysis… -> fixed Pt. Response… under the Filter tile, and fill in the 
dialog box as shown. 
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We get the same filter plots as shown previously in the Parks-McCellan FIR Design Procedure. 
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Summary   
 

The documentation on the software under the GUI reference (F6) should answer any remaining questions 
as pertains to this subject.  Note that filter design is so important in signal processing, that the software 
under the Filter tile presents all of these custom dialog procedures, and internally generates the shell 
script code, since the internal engine of this software compiles a shell script file into ‘tree code’, and 
executes that code.  Note that in Appendix A, and under the Digital Filters Block, that only the functions 
listed with vectors should be used in writing shell scripts for design analysis, as the other functions are no 
longer supported.  
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 Chapter 9 - Spectral Analysis and Convolution/Correlation 
  

 Introduction 
 
Spectral Analysis is an especially important topic in signal processing, since a large majority of 
applications deal with stochastic processes.  Many signals have unwanted signals buried in the noise, and 
it’s important for the engineer to identify these signals.  Once unwanted signals are identified, many 
techniques can be employed to block these signals, including digital filtering, matched filters using 
correlation techniques, windows to trim side lobes, …, etc.  The task of detecting signals in a given signal 
space or frequency band is a difficult task because of different noise environments, dead zones, signals 
with on and off times, etc. For detection, we want to know if these is an unwanted or unknown signal 
present in a given signal space or frequency band.  If a signal is detected, we want to obtain the signal 
parameters such as frequency, power, signal bandwidth, etc.  Since many signals are harmonic, we can 
use the Discrete Fourier Transform or FFT, in combination with windows to accomplish the task.  
Accordingly, this SOFTWARE has implemented the following window functions widely used in signal 
processing tasks, namely: the 4-term Blackman harris Window; the Blackman Window; the Dolph-
Chebyshev Window; the Gaussian Window; the Hamming Window; the Hanning Window; the Kaiser 
Window; theTappered Rectangular Window; and the Triangular Window.  The user can run the shell 
script program FFT Window Functions under the SpecAnalysis tile on the main menu to display these 
functions.  The documentation of these functions can be found in the functions Reference (F7) under the 
Spectral Analysis tile. The user can also consult the reference material.*  Below we show some plots of 
these functions. 
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* [3], [1] pp 88-105, [2] pp 444-464, [4] 43-51, [5] pp 664-670 
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Power Density Spectrum using The Window-Overlap Method 
 

We note that the Rectangular Window has a 13 dB side lobe below the main lobe, while the 4-term 
Blackmanharris Window has a side lobe of 92 dB below the main lobe.  However, the main lobe is 4 
times the width of the Rectangular Window.  The Rectangular window cannot be used in a robust 
spectrum analysis task, so we need to reduce the main lobe width of the Blackmanharris Window, so has 
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not to miss very narrow band signals.  A paper by harris comes to the rescue$.  We introduce a dialog 
procedure to allow the user to simulate this powerful spectral analysis procedure, or alternately, to read in 
external data and process multiple records with resulting output.  This procedure is a modification of the 
standard Welch method of Periodogram averaging, in that the data is windowed over four times the 
segment size, and then folded  into the segment size, thus effectively reducing the main lobe down to the 
main lobe size of a rectangular window.  This folding is given by the following equation from the paper 
by harris. 
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The dialog for simulated input allows for three simulated sinusoidal entries along with either additive 
Gaussian or White noise.   For external input, click the File Data Input button in Options Group 2, and 
specify a data file by depressing the Click for File Input button.  Under the Dialogs tile in the main menu, 
we select the Power Density Spectrum tile and are given the following dialog entry. 
 

 
 
We note the input parameters and run the test as entered with the following results. 
 

                                                 
$ [6] 
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We note that we detected the three signals at 1000, 1100, and 2000 Hz.  Now for the simulated file input 
case, we go to the Data File Generation… dialog procedure under the Dialogs  menu, and enter the 
following parameters as shown in the dialog box below. 
 

 
 

Make sure you navigate to the specanal sub-directory.  This generates a plot as follows. 
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So we go back to the Power Density Spectrum dialog procedure and enter the following parameters as 
shown below.  Make sure the File Data Input button is depressed. 
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Ignore the error massage, and note the 5 plots produced.  Note that one can display all 5 plots by ctrl+5 or 
ctrl+shft+5 as described in Chapter 6 on Plotting Details.  Record 1 and Record 5 plots are shown below. 
 

550

500

450

400

350

300

250

200

150

100

50
5000450040003500300025002000150010005000

Frequency in Hz

Record #1

P(
ν)

450

400

350

300

250

200

150

100

50
5000450040003500300025002000150010005000

Frequency in Hz

Record #5

P(
ν)

 
 

PSD for Complex Signals in Noise 
 

For estimating the frequencies of a sum of complex exponentials in white noise, several algorithms exist, 
namely the MUSIC (MUtiple Signal Classification) Method, the Eigenvector Method, and the Minimum 
Norm Algorithm.*  The methods are closely related, and use eigenvalues and eigenvectors in their 
associated algorithms. For the MUSIC algorithm, the equation for the Power Density Spectrum is defined 
as, 
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For the autocorrelation matrix Rx of M samples, then v(k) are those eigenvectors matched to the lowest 
eigenvalues, whose roots lie on the unit circle.  Note that each summation uses a 2048 point FFT with 
zero padding.  This algorithm works best for complex sinusoids or other narrowband spectral components 
in WHITE NOISE; for COLORED NOISE, there's a degradation in the algorithms performance.  Find 
below an example of this technique. 
 

#include "sigsys.h" 
int i, k, N = 1024; 
veccmplx x[N], n; 
vector Px; 
float SampF = 10000;  // Hz 
complex phaseOff; 
vector freq[] = { 1250, 1500, 2500, 3000  }; // Hz 
vector omega; 
 
n = cmplx(0, vecGen(0, 1, N-1)); 
omega = 2*pi*freq/SampF; 
for(i = 0; i < 4; i++) { 
 phaseOff = cmplx(0, 2*pi*randf()); 
 x += exp(omega[i]*n + phaseOff); 
} 
x += uniformV(N); 
Px = MUSICpds(x, 8, 32); 

                                                 
* [7]  pp 451-469 
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openPlot("MUSICpds"); 
ploty(0, SampF/Sizeof(Px), Px, Sizeof(Px)); 
grid(); 
xLabel("Frequency Hz"); 
 
yLabel("Magnitude (dB)",1); 
Title("The MUSIC PSD Algorithm for complex sinusoids in noise"); 
pCRT(); 
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Zoom FFT using the Chirp Transform Algorithm 
 

For a N point FFT algorithm, N complex values are computed at N points distributed equally around the 
unit circle.  To compute in a reduced frequency range on the unit circle, we turn to the CTA*.  For a 
signal at a frequency of 24 KHz, and zooming in at 300 to 900 Hz, we have 
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* [2] 623-628, [5] pp 544-549 
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veccmplx ChirpZ(vector Vin, float Fh, float Fl) 
{ 
 int tmp, M, N, NFFT = 8192; 
 complex A, W; 
 vector  k; 
 veccmplx Xk, Wk, Yk, FFTYk, FFTWk, Gm, Wn, Xm, Vtmp; 
 
 M = Sizeof(Vin); 
 A = exp(-2j*pi*Fl); 
 W = exp(-2j*pi*(Fh-Fl)/(2*(NFFT-M-2))); 
 Xk = { Vin, zerosV(NFFT-M) }; 
 k = vecGen(0, 1, NFFT-1); 
 Yk = Xk.*A.^k.*W.^(k.*k); 
 Wk = W.^(-k.*k); 
 Wk = { Wk[0:1:NFFT-M-1], flip(Wk[0:1:M-1]) }; 
 FFTYk = fft(Yk, NFFT); FFTWk = fft(Wk, NFFT); 
 Gm = ifft(FFTYk.*FFTWk); 
 Wn = W.^(k.*k); 
 Xm = (Gm.*Wn); 
 Vtmp = copyV(Xm, 0, NFFT-M); 
 return(Vtmp); 
} 
vector Vin; 
veccmplx Vout; 
float Freq, Fl, Fh; 
int fd, npts; 
Freq = 24000; Fl = 300; Fh = 900; 
fd = open("C:\SlideRule\specanal\SIGFFT3.DAT","r"); 
npts = readV(Vin, 2048, 6, fd); 
close(fd); 
Vout = ChirpZ(Vin, Fh/Freq, Fl/Freq); 
openPlot("Zoom-FFT"); 
Title("Zoom FFT using ChirpZ Transform"); 
xLabel("Frequency - Hz"); yLabel("MAGNITUDE",0); 
ploty(Fl,(Fh-Fl)/Sizeof(Vout),abs(Vout), Sizeof(Vout)); 
grid(); 
pCRT(); 
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 Chapter 10 - Signal Processing 

Introduction 
 
This Chapter presents some of the basic functions that would be presented in an introductory course in 
signal processing.  All of the functions presented here reside in the Signal Processing Toolbox.  A listing 
of these functions can be found in Appendix A.  Note that all of the functions are written as shell scripts, 
which allows the user to examine the details of a given functions implementation. In Chapter 8, we 
covered IIR filter design under the menu tile Filter. These were bi-quad designs which are the preferred 
implementation in real world situations.  So were going to start off covering this topic. The main purpose 
here is to allow the beginning novice to examine each module, and compare to the appropriate material in 
a textbook. 

 

General IIR Filter Design* 

Under the Dialogs menu tile, we click the IIR Filter Design tile, and are presented will the following 
dialog box, 

 

 
 

                                                 
*  [1] pp 791-727, [2] 301-362, [3] 205-292 
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As noted in the dialog entry box, this procedure allows one the design one of the four filter types as 
specified in Options group 2, in one the four flavors as selected in options group 1.  Note that this is a 
user generated (programmed) dialog entry as covered in Chapter 7.  We note in options group 4, that we 
can select up to 7 different plot outputs.  The two entries of the lower left are used when we select a 
Chebyshev II design.  For the given entry (Elliptic Design), find four of the seven plots below. 
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Below is a print out by selecting function key F12. 
 

Elliptic Digital Filter Design 
 
Filter type is LowPass 
Filter order = 6 
Sample Frequency = 10000 Hz 
Lower Passband Frequency = 1000 Hz 
Upper Passband Frequency = 2000 Hz  // used in band pass designs 
Coefficients of Direct form of filter 
vector -> num(7) 
[index 
0000    0.016048 -0.048171 0.085968 -0.098949 0.085968 -0.048171 0.016048 
] 
vector -> den(7) 
[index 
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0000     1  -4.7549   10.043  -11.926  8.3648  -3.2804  0.56292 
] 
Coefficients of Cascaded form of filter 
Gain = 0.01605 
matrix -> B(3,3) 
[row 
0000           1   -0.076091           1 
0001           1     -1.3889           1 
0002           1     -1.5368           1 
] 
matrix -> A(3,3) 
[row 
0000           1     -1.5758      0.6675 
0001           1     -1.5831     0.86724 
0002           1     -1.5959     0.97242 
] 
Zero's and Poles's of filter 
Zeros = vector(cmplx) -> Vz(6) 
[index 
0000    0.038046 -0.99928j  0.038046 +0.99928j   0.69444 +0.71955j  
0.69444   -0.71955j 0.76839   +0.63999j  0.76839  -0.63999j 
] 
Poles = vector(cmplx) -> Vp(6) 
[index 
0000    0.78791 -0.2161j   0.78791 +0.2161j  0.79157 +0.49056j  
0.79157 -0.49056j  0.79796 -0.57938j 0.79796 +0.57938j 
] 

 
Note the shell script code for this design nodule can be found in digitalf\iirDFD.txt.  You can examine it 
by selection function key F10.  Below is a table of the functions used in this design tool. 
 
 
 

File Directory Function Description 
bilinear.txt sigsys bilinear Bilinear transform 
butterap.txt sigsys butterAP Butterworth analog prototype 
butterdf.txt sigsys butterDF Butterworth digital filter design 
cheby1ap.txt sigsys cheby1AP Chebyshev-I analog prototype 
cheby1df.txt sigsys cheby1DF Chebyshev-I digital filter design 
cheby2ap.txt sigsys cheby2AP Chebyshev-II analog prototype 
cheby2df.txt sigsys cheby2DF Chebyshev-II digital filter design 
ellipticap.txt sigsys ellipticAP Elliptic analog prototype 
ellipticdf.txt sigsys ellipticDF Elliptic digital filter design 
dir2cas.txt sigsys dir2cas Direct form of filter to 2-order sections 
freqF..txt sigsys freqF Frequency response of digital filters 
 Internal func stepF Step response of digital filters 
 Internal func. impulseF Impulse response of digital filters 
groupDelay.txt sigsys  groupDelay Group delay calculation 
Smapping.txt sigsys Smapping Analog freq. band transformation 
Strans.txt sigsys  STrans Prototype freq. band transformation 
dir2cas.txt sigsys dir2cas Direct form of filter to 2nd-order sections 
 Internal func polyR Roots of polynomial for vector input 
 Internal func polyM Polynomial multiplication 
 Internal func poly Polynomial coefficients from its roots 
 Internal func ellipticJ Jacobian elliptic function 
 Internal func ellipticC Elliptic integral of 1st kind 
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Lattice Filter Structures 
 
Lattice filter structures are used extensively in speech processing and certain adaptive filters because they 
have desirable properties, computation efficiency and robustness to round off errors. The routines for 
performing these lattice conversions can be found in the software help menu in the Signal Processing 
Toolbox.*   Note that lattice filters have several properties, namely$: 

1) The reflection coefficients that are generated by the Levinson –Durbin recursion, to solve 
the autocorrelation normal equations, are bounded in magnitude by .1≤Γ j  

2) If ap(k), and jΓ is the set of corresponding reflection coefficients, then the polynomial in 

ap will be a minimum phase polynomial if and only if  jΓ  < 1 for all j. 

3) If ap is the solution of the Toeplitz normal equations Rpap = epu1, then Ap(z) vill be minimum 
phase, if and only if Rp is positive definite, Rp > 0. 

4) The autocorrelation method produces a stable all-pole model. 
5) If aj is a set of filter coefficients, and jΓ  < 1 for j = 1, …, p-l, and pΓ  = 1, then the 

polynomial has all its roots on the unit circle. 
 
 All-Zero Lattice Filters 
 

A FIR filter of length M can be converted to a lattice structure. The FIR coefficients are converted to lattice 
(K) parameters, and are called the reflection coefficients.  The block diagram for an all zero lattice structure 
is as follows. 
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A Demo of an all zero FIR filter to a Lattice form, 
and from the Lattice form back to the all zero direct form 
 
Input FIR coefficient vector -> h(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 
Lattice coefficeint vector -> K(4) 
[index 
0000           2         0.5        0.25    0.033333 
] 
Conversion back to FIR vector -> H(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 

  
 
 

                                                 
*  [1] pp 574-582, 594-602, [2] pp 208-218 
$  [5] pp 225-232 



  157 

All-Pole Lattice Filters 
 
 

The lattice structure for an all pole IIR filter to lattice structure is as follows. 
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A Demo of an all pole IIR filter to a Lattice form, 
and from the Lattice form back to the all pole direct form 
 
Input IIR coefficient vector -> a(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 
Lattice coefficeint vector -> K(4) 
[index 
0000         0.5         0.5        0.25    0.033333 
] 
Conversion back to all pole IIR vector -> den(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 

 
Lattice Ladder Filters 

 
 

The lattice ladder structure for an IIR filter containing both poles and zeros follows. 

K(1)

-K(N) -K(2) -K(1)

K(2)K(N)
z

-1
z

-1
z

-1

x(n)
-K(0)

y(n)C C C
2

C
1 0

C
M M-1

g
M M-1g

2
g g

1 0
g

f f f f f
M M-1 2 1 0

 
A Demo of a pole-zero filter to a Lattice/Ladder form, 
and from the Lattice/Ladder form back to the pole-zero direct form 
 
Input numerator coefficient vector -> num(4) 
[index 
0000           1           2           2           1 
] 
Input denominator coefficient vector -> den(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 
Lattice coefficeint vector -> K(4) 
[index 
0000         0.5         0.5        0.25    0.033333 
] 
Ladder coefficeint vector -> C(4) 
[index 
0000      0.1875       0.875      1.3667           1 
] 
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Numerator vector -> b(4) 
[index 
0000           1           2           2           1 
] 
Denominator vector -> a(4) 
[index 
0000           2      1.2667     0.54167    0.066667 
] 

The z Transform Inversion* 
 

Given a rational function, we want to compute the residue, and direct and/or polynomial terms in z -1, and 
then convert it back to rational form. 
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Using the function residueZ in the Signal Processing Toolbox, we have 
 

#include "sigsys.h" 
 

vector num[] = { 1, .2*sqrt(2) }; 
vector den[] = { 1, -.7*sqrt(2), .81 }; 
vector k; 
veccmplx p, r, a, b; 
 
Print(num); Print(den); 
p = residueZc(num, den, r, k); 
printf("Poles = "); Print(p);  
printf("Residues = "); Print(r);  
printf("Direct term = "); Print(k); 
printf("Going in reverse\n"); 
a = residuezc(r, p, k, b); 
Print(b); Print(a); 
************************************************** 
vector -> num(2) 
[index 
0000           1     0.28284 
] 
vector -> den(3) 
[index 
0000           1    -0.98995        0.81 
] 
Poles = vector(cmplx) -> p(2) 
[index 
0000     0.49497   +0.75166j     0.49497   -0.75166j 
] 
Residues = vector(cmplx) -> r(2) 
[index 
0000         0.5    -0.5174j         0.5    +0.5174j 
] 
Direct term = vector -> k(0) 
[] 
Going in reverse 
vector(cmplx) -> b(2) 
[index 
0000           1    +0j    0.28284    +0j 
] 
vector(cmplx) -> a(3) 
[index 

                                                 
*  [4] 
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0000           1    +0j   -0.98995    +0j    0.81   +0j 
] 

 
 

Analog Filter Design 
 
Under the Dialogs menu tile, we click the Chebyshev-II Analog Filter Design tile, and are presented will 
the following dialog box, 

 

 
 

 
For the given entry (LowPass), find some of the output plots below. 
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The CELP Algorithm* 
 
In all cell phones, the CELP (Code Excited Linear Prediction) algorithm is used to compress speech 
samples.  In most cases the algorithm resides in a separate signal processor embedded in an ASIC.  The 
model for the speech analysis and synthesis is based on modeling the vocal tract as a linear all-pole (IIR) 
filter that has the system function 

∑
=

−+
= p

k
p zka

GzH

1

1)(1
)(  

The speech is usually sampled at 8 KHz from an 8-bit A/D Mu-law codec chip is blocks of 160 samples, 
for 20 msec. frames.  The codec chip has a built in anti-aliasing filter, with a pass band of 3.3 KHz (-3 
dB), and a stop band of 4 KHz (-25 dB).  The first order of processing is to convert the logarithmic 8-bit 
mu-law samples into 12-bit linear samples.  Next, a pre-emphasis filter is run to add gain to the higher 
frequencies in the sample block.  In order to solve for the ap coefficients in the above equation, we form 
an autocorrelation matrix Rss and solve for the autocorrelation vector raa to generate 10 LPC coefficients 
ap by solving the following matrix equation ap = -Rss

-1rss.  This equation is solved with the recursive 
Levinson-Durbin algorithm, because it’s fast, and we want to lessen the use of battery power.  Now, when 
we examine the 10 LPC coefficients, we note that there’s quite a spread in the range of the coefficients.  
Since the transmitting channel is limited in bandwidth, were limited on the amount of information we can 

                                                 
*  [5] pp 163-166, [2] 399-403, [1] 846-850 
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put into the digital message to be sent.  Also note that the digital message will have to have additional bits 
of FEC coding using a Viterbi encoder.  So we perform a trick.  We convert the 10 LPC coefficients into 
line spectral pairs. The inverse LPC filter is given by, 

p
p zazazA −− +++= L1

11)(  
For a 10th order system, we compute the polynomials P(z) and Q(z). 
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The LPC coefficients A(z) can be recovered from P(z) and Q(z) by 
 

[ ]
2

)()()( zQzPzA +
=  

After solving for the roots of P and Q, we note that the polynomial Q(z) has a real root at z = 1, and the 
R(z) polynomial has a real root z = -1;  with all the other roots complex. All of the roots lie on the unit 
circle; with the roots of P and Q alternating.  So the output vector contains the angles (in radians) from 0 
to pi of a line from the origin to the complex roots in the positive half of the unit circle.  This is a 
tremendous advantage, since the range of the coefficients is fixed, which makes quantization much 
simpler.  After we have the 10 Q and P coefficients in the upper half of the unit circle, we quantize them 
into a range of smaller bit lengths depending on which coefficient, and then convert these quantized 
coefficients back to the A’s, or LPC coefficients.  Then a search of two code books is done to determine 
the best fit to the given block of speech.  The code books are designed to model most of the speech 
sounds generated by the vocal track of human speech.  In each iteration of the search, speech samples 
(160) are generated from the quantized LPC coefficients, and cross correlated with the input speech 
samples.  The highest score of this search then stores the saved code book parameters that will be encoded 
into the sent message along with the quantized line spectral pairs.  On the receiver side, the algorithm 
converts the line spectral pairs to LPC coefficients, and uses the code book parameters to excite the all-
pole filter to generate the 160 PCM samples to be output to a 12-bit DAC that drive’s the receiver’s 
speaker.  Note that at the receiver, the output samples to the speakers DAC have to be started no later then 
~100 milliseconds after receiving the message.  This is a broad overview of the speech algorithm, 
however, there’s more to it, such as full rate, half rate, quarter rate, and eighth rate frames, and other 
goodies, because although one wants to have the best sounding fit to the actual speech, were limited by 
the number of CPU instructions in the signal processer, since CPU cycles in CMOS devices use current, 
and the less CPU cycles per frame, the longer the battery will last.  Having presented the above, find a 
simulation of using line spectral pairs from a real speech sample of 160 samples. 
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#include "sigsys.h" 
int fd, cnt, N = 10; 
vector Sig, Rss, Ap, K, LSP, P[N+1], Q[N+1], ApChk;; 
float  er, ftemp; 
 
fd = open("c:\sliderule\specanal\speech.bin","rb"); 
cnt = skip(7000, 3, fd);  //skip 7000 samples to get a speech frame 
cnt = readV(Sig, 160, 3, fd); // read in 160 samples; 
close(fd); 
rss = autocor(Sig, N); // Solve for auto-correlation vector 
printf("The auto-correlation vector "); Print(Rss); 
er = LevDurbin(Rss, Ap, K);  // Solve for the LPC coefficients 
printf("The inverse LPC filter "); Print(Ap); 
LSP = lineSpec(Ap, P, Q);  // Get line spectral pairs 
printf("The line spectral pairs "); Print(LSP); 
Print(P); Print(Q); 
ApChk = (P + Q)/2;  
printf("Converting back to LPC cpefficients "); Print(ApChk); 
********************************************************************* 
The auto-correlation vector vector -> Rss(11) 
[index 
0000  2.0391e+05  1.9033e+05  1.6952e+05  1.522e+05  1.3696e+05   
      1.1715e+05  93870       73918       60761       53202      47894 
] 
The inverse LPC filter vector -> Ap(11) 
[index 
0000      1  -1.229   0.43356   -0.14878  -0.18515   0.12486   
          0.14441  0.011418   0.03571   0.059809 -0.055368 
] 
The line spectral pairs vector -> LSP(10) 
[index 
0000      0.14265   0.34175   0.54726   1.0126   1.2641   
          1.4829    1.781     2.1264    2.4896   2.8092 
] 
vector -> P(12) 
[index 
0000      1   -1.2843   0.37375   -0.11307   -0.17373   0.26927    
          0.26927   -0.17373   -0.11307   0.37375   -1.2843   1 
] 
vector -> Q(12) 
[index 
0000      1   -1.1736   0.49337   -0.18449   -0.19657   -0.019557     
          0.019557   0.19657   0.18449   -0.49337   1.1736   -1 
] 
Converting back to LPC cpefficients vector -> ApChk(12) 
[index 
0000      1   -1.229   0.43356  -0.14878   -0.18515   0.12486    
          0.14441   0.011418   0.03571   -0.059809   -0.055368   0 
] 
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OFDM – Orthogonal Frequency Division Multiplex*  

 
The principal of OFDM is to take a high rate data channel, and split it into a number of lower rate 
channels, and transmit them simultaneously over a number of subcarriers frequencies.  Because the 
symbol rate over the subcarriers is slower by a factor of N subcarriers, the amount of dispersion in time 
caused by multipath delay is decreased significantly.  Because of this, an adaptive filter or a rake type 
receiver is not needed.  A guard time inserted in with every OFDM symbol, almost entirely eliminates 
intercarrier interference. Each subcarrier shows a random phase shift and amplitude change caused by 
carrier frequency offset, timing offset, and frequency selective fading. Two methods exist to handle these 
conditions, namely coherent and differential detection. For coherent detection, is idea is to lessen the 
training data to find the reference values, and will be the topic of this discussion.  In particular, will look 
at IEEE 802.11a, commonly known as WiFi. 

                                                 
* [8], [9] 
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OVERVIEW OF IEEE STANDARD 802.11A   

The current 802.11a standard consists of 20 MHz channels in the frequency ranges of; 5.15-5.35 GHz; 
5.425-5.675 GHz; and 5.725-5.875 GHz. A block diagram of OFDM channel processing follows. 
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The following tables show the different modulation schemes and timing parameters used in the IEEE 
802.11a standard. 
 
RATE Data Rate (Mbits/s) Modulation NBCAR Code Rate NBSYM NCSYM
1101 6 BPSK 1 1/2 24 48 
1111 9 BPSK 1 3/4 36 48 
0101 12 QPSK 2 1/2 48 96 
1101 18 QPSK 2 3/4 72 96 
1101 24 16 QAM 4 1/2 96 192 
1101 36 16 QAM 4 3/4 144 192 
1101 48 64 QAM 6 2/3 192 288 
1101 54 64 QAM 6 3/4 216 288 

 

NBCAR: Number of coded bits per subcarrier. 
NBSYM: Number of data bits per OFDM symbol. 
NCSYM: Number if coded bits per OFDM symbol. 
Parameter Value 
Number of data subcarriers 48 
Number of pilot subcarriers 4 
Number of total subcarriers 52 
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Number of padded zeros 11 
Number of samples in guard interval 16 
Subcarrier frequency spacing 312.5 KHz 
IFFT/FFT period 3.2 us 
IFFT/FFT size 64 
Preamble duration 16 us 
Guard duration 0.8 us 
Long preamble duration 8 us 
Short preamble duration 8 us 
OFDM symbol duration 4 us 
Guard interval duration for long preamble 1.6 us 

 
 
The OFDM Modulator Scheme 

 
On the transmit side of the OFDM transceiver, a 64 IFFT is used to transfer the QAM symbols to a 
complex OFDM signal at baseband.  The resulting is then modulated to a RF frequency as shown in the 
block diagram. 
The plots below shows an example of four subcarriers within an OFDM signal, and the spectra of the 
individual subcarriers.  Note that the spectra are a group of Dirac pulses located a subcarrier frequencies 
with a square passband that has zeros for all frequencies which are integer multiples of the subcarrier 
bandwidth. 
 

 

 



               166 

 
 
IEEE 802.11A Message Format 
 

RATE 
4 bits 

Reserved 
1 bit 

Length 
12 bits 

Parity
1 bit 

Tail 
6 bits

SERVICE 
16 bits 

PSDU Tail 
6 bits 

Pad Bits

SERVICE: Scrambler initialization + Reserved bits 
PSDU: Physical layer Services Data Unit 
Tail: To return the encoder to the zero-state 
Pad Bits: To make the length of  DATA a multiple of NCBPS 
 
PLCB Preamble 
12.5 symbols 

SIGNAL 
1 OFDM symbol 

DATA 
Variable number of OFDM symbols 

 
PLCB: Physical Layer Convergence Preamble (10 short training sequences, plus 2.5 long     

training sequences 

The short training sequence 

• Signal detection 
• AGC convergence 
• Diversity selection 
• Timing acquisition 
• Course frequency acquisition 
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The long training sequence 

• Channel estimation 
• Fine frequency acquisition 

 
Carrier Recovery 
 
At this point we want to perform a simulation, and estimate the STO (symbol time offset) and CFO 
(carrier frequency offset).  Plots of the time-domain short preamble and the time-domain long preamble 
are shown below. 
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We next join these signals, add noise, and set the CFO to 1.56. 
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Note that in the IEEE 802.11a fixed-lag (Ng) correlation of the short training sequence is used for the 
course CFO estimate, and the fixed lag correlation of the long training sequence is used for the fine CFO 
estimate. 
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The Preamble Structure of the IEEE Standard 802.11a 

 |                        8 us Short preamble                              |                 8 us Long preamble                  |                    

 |  16  |                                                                                 |    32       |          64                |         64               | 

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 GI2 T1              T2 

From the plot of theTime-domain short preamble, we can see that every t segment (16 samples) repeats 
the same values as the previous segment.  From the code segment for the course CFO estimate 
(courseCFOest), we can see that the correlation starts at t8 and correlates (16 samples) with t9*, and then 
again with t9 over t10+. The angle (arg) of the resulting complex number is the estimate of the course 
CFO.  With a first estimate of the CFO, we then call subroutine CompSigCFO to correct the elements in 
T1 by the estimated CFO value.  We then correlate T1 over T2 to get the fine CFO estimate, and then add 
them together for the updated CFO, all while staying in the preamble when a OFDM message is detected. 

 
Symbol Synchronization 

In a similar manner, one can use correlation techniques to estimate the STO (symbol timing offset value).  
We note that the Guard interval or cyclic prefix (CP) is 16 samples, while the OFDM data length consists 
of 64 samples, or the length of the IFFT/FFT.  The method is to correlate TWO sliding windows of 16 
samples separated  by the FFT length of 64, while looking for a peak value.  The correlation value is 
divided by the product of the norms of the two vectors to defeat false detections due to a  noisy signal, 
and a threshold is employed to determine if a peak has been detected or not.  The following plots show 
simulation results using this algorithm.  The shell script code follows. 
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 // 
 // Simulate symbol time offset (STO) 
 // 
 tframe = cmplx(uniformV(65),uniformV(65))/sqrt(12); 
 for(i = 0; i < 3; i++) { 
  
  symbol = cmplx(uniformV(Nfft),uniformV(Nfft)); 
  symbol /= sqrt(12); 
  symbolCP = { symbol[48:63], symbol }; 
  tframe = { tframe, symbolCP }; 
 } 
 Lframe = Sizeof(tframe); Print(Lframe); 
 noise = 0.2*cmplx(uniformV(Lframe),uniformV(Lframe))/sqrt(12); 
 
 r = tframe + noise; 
 sigW = zerosM(2, Ng); corr = zerosV(Lframe); STOs = { }; 
 for(i = 0; i < Lframe; i++) { 
  Vc = sigW[0]; 

// update signal window 1 
  sigW[0] = (veccmplx){ Vc[1:Ng-1], r[i] }; //  
  m = i - Nfft; 
  if(m > 0) { 
    Vc = sigW[1]; 

// update signal window 2 
    sigW[1] = (veccmplx){ Vc[1:Ng-1], r[m] }; 
    den = normV(sigW[0],'2')*normV(sigW[1],'2'); 
    corr[i] = abs(sigW[0]*sigW[1]')/den; 
    if(corr[i] > cor_thres) STOs = {STOs, m }; 
  } 
 } 
 TSTOs = zerosV(Sizeof(STOs)); TSTOs[0] = 64+Ng; 
 for(i = 1; i < Sizeof(TSTOs); i++) TSTOs[i] = TSTOs[i-1]+Nfft+Ng; 
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  Chapter 11 - Random Signals and their Distributions 

 

Introduction 
 
Signals can be classified into one of two types, namely deterministic and random.  Deterministic signals 
can be reproduced exactly, and don’t vary over time.  A random signal, or random process, on the other 
hand, is a signal that is not repeatable in a predictable manner.  These later type signals occur repeatedly 
in real world engineering and scientific systems.  Accordingly, we have mathematical models and 
variables to analyze these types of signals or stochastic processes.  The following topics cover the more 
basic models that occur repeatedly in the field of digital communications.  Note that the shell script code 
listed in this chapter is without the annotation code, as one can generate this code with mouse and 
keyboard entries once a given plot is displayed, and have the code automatically inserted into the shell 
script file, as covered in Chapter 6 on Plotting Details. 
 

The Uniform Random Variable* 
 
A uniform random variable x has a PDF as follows: 
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In order to model this random variable, Slide-Rule employs functions randf and randV.  Function randf 
when called, returns a (floating point) number in the range of zero to one, while function randV returns a 
uniform random vector.  The algorithm to generate these uniform random numbers uses a linear 
congruence algorithm and an additional random shuffling process to effectively remove any sequential 
correlation in the linear congruence equation.  The following example shows histogram and 
autocorrelation plots of a uniform random vector, which shows the PDF is basically flat and that there in 
no correlation between the uniform generated samples. 
 

vector Vsig, Vacor; 
float Vmean, Vvar; 
 
Vsig = randV(10000)- 0.5; 
openPlot("Histogram of Uniform Random variable"); 
histoP(Vsig, Sizeof(Vsig), -.5, .5, 50); 
pCRT(); 
Vmean = mean(Vsig); Vvar = var(Vsig); Print(Vmean); Print(Vvar); 
Vacor = autocor(Vsig, 300); // 300 lags 
openPlot("Auto-Correlation of Vsig"); 
ploty(0, 1, Vacor, Sizeof(Vacor)); 

                                                 
* [3] pp 81-82, [2] pg 41 
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pCRT(); 
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We note that mean of this signal is near zero, and that the variance closely agrees with the equation as 
stated above.  Note that in the code that the annotations (title, x-label, y-label, text, and arrow) were all 
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entered with mouse and keyboard actions once the two plots were displayed on the monitor, but are not 
shown in the code segment. 
 

The Gaussian (Normal) Random Variable* 
 

The Gaussian random variable x has the PDF as follows: 
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Recall from the central limit theorem, that all random variables, no matter what their distribution, 
approaches (over time) a Gaussian distribution if the variables are statistically independent.  For that 
reason, the Gaussian random variable is widely used in engineering and scientific simulations.  In order to 
model this random variable, Slide-Rule employs functions randn and nornalV.  Function randn when 
called, returns a (floating point) Gaussian deviate with unit power, while function normalV returns a 
normal random vector.  The algorithm to generate these Gaussian random numbers follows;  The 
Rayleigh probability distribution function with random variable x: 
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The internal code in Slide-Rule is as follows: 
 

DOUBLE gaussianN() 
{ 
 static long iset = 0; 
 static DOUBLE gset; 
 DOUBLE r, v1; 
 if(iset == 0) { 
  while((v1 = randf()) == 1);  // randf(), uniform (0->1) 
  r = sqrt(2.0*log(1.0/(1.0-v1))); 
  v1 = randf(); 
  gset= r*sin(2*M_PI*v1); 
  iset = 1; 
  return r*cos(2*M_PI*v1); 
 } else { iset=0; return gset; } 
} 

                                                 
* [1] pp 20-24, [3] pp 82-83, [2] pp 41-44 
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Note that this function returns with unit power, and to obtain Gaussian random numbers at a different 
power level, we just multiply by the square root of the variance, or sigma. The following example shows 
a random Gaussian signal and a PDF plot along with the calculated probability values. 
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The code for the above example is a follows: 



  177 

 
#include "normalPDF.txt" 
 
vector Sig, x, p; 
float mu, sigma2, xVal, prob, val = 0; 
int minx, maxx; 
 
Sig = sqrt(5)*normalV(10000) + 1.5; 
mu = mean(Sig); sigma2 = var(Sig); 
minx = mu - 3*sigma2; maxx = mu + 3*sigma2; 
x = vecGen(minx, .01, maxx); 
p = normalPDF(Sig, x); 
printf("Tne signal mean = %f\n", mu); 
printf("Tne signal variance = %f\n", sigma2); 
prob = normalProb('R', Sig, val); 
printf("Probability of exceding x = %f = %f\n", val, prob); 
xVal = normalProb('I', Sig, prob); 
printf("x value at probality %f = %.3f\n", prob, xVal); 
openPlot("Signal"); 
ploty(0, 1, Sig, Sizeof(Sig)); 
pCRT(); 
openPlot("Gaussian PDF"); 
plotxy(x, p, Sizeof(x)); 
pCRT(); 

 
 

The Chi-Square (X2) Central Random Variable* 
 
For X with n independent and identically distributed zero mean Gaussian random variables with common 
variance, then X is an X2 random variable with v degrees of freedom.  The PDF of this random variable is 
given by, 
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The mean and variance are given by, 
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A plot of this function can be found below. 
 

                                                 
* [1] pp 24-26, [2] pp 45-46 
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The code for this plot follows (with annotation statements left out): 
 

vector df[] = { 1, 2, 4, 6, 8 }; 
int  i, j; 
vector x, p; 
float xVal, Prob; 
 
x = vecGen(EPS, .1, 10); 
p = zerosV(Sizeof(x)); 
openPlot("Chi-Squared Demo"); 
pminmax(0.1,10,0,0.9); 
for(j = 0; j < Sizeof(df); j++) { 
 for(i = 0; i < Sizeof(x); i++) { 
  p[i] = chisqrPDF(df[j], x[i]); 
 } 
 plotxy(x, p, Sizeof(x)); 
} 
pCRT(); 
Prob = chisqrProb('L', 6, 4); 
printf("Left tail probability (v = 6) for x = 4 = %.4f\n", Prob); 
Prob = chisqrProb('R', 6, 4); 
printf("Right tail probability (v = 6) for x = 4 = %.4f\n", Prob); 
xVal = chisqrProb('I', 6, Prob); 
printf("X value for right tail probability (v = 6) %.4f = %.4f\n",Prob,xVal); 
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The Chi-Square (X2) Non-Central Random Variable* 
 
For X with n independent and identically distributed Gaussian random variables with common variance but with 
different means (mi),  then X is a X2 random variable with n degrees of freedom.  The PDF of this random variable is 
given by, 
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The mean and variance are given by, 
 

 42 2)(           )( σσ nxVARnxE ==  
 

A plot of this function can be found below. 
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The Rayleigh Random Variable* 
 

                                                 
* [1] pp 26-28, [2] pp 46-48 
* [2] pp 48-50, [1[ pp30-31 
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The Rayleigh random variable is made up of two Gaussian random variables each distributed according to 
),0( 2σΝ , and is defined as, 

 
 2

2
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Its PDF is given by  
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From the previous discussion, we can see that a Rayleigh random variable is the square root of a Chi-
Square )( 2Χ  random variable with two degrees of freedom.  The mean and variance are given by: 
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This random variable is used quite often is the study and simulation for signals received in urban radio 
multipath channels. The following example shows plots two random Gaussian signals, both with zero 
mean but with different 2σ , and a PDF plot along with the calculated probability values. 
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The code for this plot follows: 
 

#include "sigsys.h" 
 
vector Sig1, Sig2, x, p; 
float mu, sigma2, prob, val = 0; 
float Prob, xVal; 
int minx, maxx; 
 
Sig1 = sqrt(5)*normalV(10000); 
Sig2 = normalV(10000); 
x = vecGen(0, .01, 10); 
p = rayleighPDF(Sig1, Sig2, x); 
Prob = rayleighProb('R', Sig1, Sig2, x, 4); 
printf("Probability for exceding x = 4 is %f\n", Prob); 
xVal = rayleighProb('I', Sig1, Sig2, x, Prob); 
printf("x value at probability %f = %f\n", Prob, xVal); 
openPlot("Rayleigh PDF"); 
plotxy(x, p, Sizeof(x)); 
pCRT(); 
openPlot("Signal 1"); 
ploty(0, 1, Sig1, Sizeof(Sig1)); 
pCRT(); 
openPlot("Signal 2"); 
ploty(0, 1, Sig2, Sizeof(Sig2)); 
pCRT(); 

 
 

The Rican Random Variable* 
 
The Rican random variable is made up of two Gaussian random variables each distributed according 
to ),N(m  and  ),( 2

2
2

1 σσmΝ , (i.e., the means can be different but the variances are the same) and is 
defined as, 
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Its PDF is given by  
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This random variable is used quite often is the study and simulation for signals received in urban radio 
direct line of site channels. The following example shows plots two random Gaussian signals, both with 
different mean but with the same 2σ , and a PDF plot along with the calculated probability values. 

                                                 
* [2] pp 50-52, [1[ pp 31-32 
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The code for this plot follows: 
 
 
 

#include "sigsys.h" 
 
vector Sig1, Sig2, x, p; 
float mu, sigma2, prob, xVal, val = 4; 
int minx, maxx; 
 
Sig1 = sqrt(5)*normalV(10000)+1; 
Sig2 = normalV(10000)+1.2; 
x = vecGen(0, .01, 10); 
p = ricianPDF(Sig1, Sig2, x); 
prob = ricianProb('R', Sig1, Sig2, x, val); 
printf("Probability of exceeding x = %f = %f\n", val, prob); 
xVal = ricianProb('I', Sig1, Sig2, x, prob); 
printf("x-value at probability %f = %f\n", prob, xVal); 
openPlot("Rican PDF"); 
plotxy(x, p, Sizeof(x)); 
pCRT(); 
openPlot("Signal 1"); 
ploty(0, 1, Sig1, Sizeof(Sig1)); 
pCRT(); 
openPlot("Signal 2"); 
ploty(0, 1, Sig2, Sizeof(Sig2)); 
pCRT(); 
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 Chapter 12 - Adaptive Filters 

Introduction 
 
Adaptive filters are widely used in the field of engineering for applications such as; System 
identification; Predictive de-convolution; Adaptive equalization;  Blind equalization; Linear 
predictive coding; Adaptive differential pulse-code modulation; Spectrum analysis; Signal 
detection; Adaptive noise canceling; Echo suppression; and Adaptive beam forming among 
others.  This chapter presents some examples in the areas of System identification, Adaptive 
equalization, Adaptive noise canceling, and Echo suppression 

 

A Wiener filter for Noise Canceling* 
 
A Wiener filter is based on finding the solution to the Wiener-Hopf equations.  The restrictions 
for the solution in the digital domain are;  a linear transversal filter, or FIR filter, must be used to 
calculate the desired response d; The autocorrelation matrix R must be computed from the 
autocorrelation function, with the number of lags equal to the number of taps in the FIR filter; A 
cross-correlation vector must be computed between the tap inputs u and the desired response d.  
From the above statements, we see that a Wiener filter is only applicable for linear systems, i.e., 
for non-linear systems, other solution algorithms are required.  A block diagram of the FIR filter 
follows 
 

-1z -1z -1z
u(n)

w0 w1 wM-2 wM-1

u(n-1) u(n-M+1)

d(n)

e(n)
d^

. . .

. . .

. . .

 
The correlation matrix R is computed by E[u(n)uH(n)], where E is the statistical expectation 
operator, and u is the tap input vector.  In expanded form we have, 
 

                                                 
* [3] pp 194-236, [2] pp 49-82, [1] pp 60-110, [3] 50-56 
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The cross-correlation vector is computed by p = E[u(n)d*(n)].  Thus the Wiener-Hopf equation in 
matrix form is given by  Rw = p,  where w is the tap-weight vector to the transversal filter.  The 
block diagram for an adaptive noise canceller is: 
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For an example of a speech signal corrupted by noise, plots of the signals in a simulation 
example follow. 
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The shell script for this example is shown below. 

 
#include "sigsys.h" 
 
int i, N = 15000, L = 13; 
vector v, a, b, v1, s; 
int fd, cnt; 
vector err, wo, sig; 
fd = open("c:\sliderule\specanal\speech.bin","rb"); 
cnt = readV(sig, 100000, 3, fd); 
close(fd); 
openPlot("Speech Data"); 
penS(14,1,0,0,0); 
ploty(0, 1, sig, Sizeof(sig)); // sig = speech signal 
grid(); 
xLabel("Sample Number"); 
Title("Speech Signal"); 
yLabel("AMPLITUDE",0); 
pCRT(); 
v = uniformV(N); 
b = { 1, zerosV(50), -.99 }; 
a = { 1, - 1.87, .96 }; 
v1 = filter(b, a, 3.3*v); 
openPlot("Noise"); 
ploty(0, 1, v1, Sizeof(v1)); // v1 = noise signal 
yLabel("AMPLITUDE",0); 
xLabel("Sample Number"); 
Title("Construction Noise"); 
pCRT(); 
s = sig + v1; 
openPlot("Speech + Noise"); // s = speech + noise signal 
ploty(0, 1, s, Sizeof(s)); 
yLabel("AMPLITUDE",0); 
xLabel("Sample Number"); 
Title("Speech plus Noise"); 
pCRT(); 
// s = signal d in block diagram 
// v1 = signal u in block diagram 
// L = number of tap weights in FIR adaptive filter 
// w0 = calculated weights in adaptive filter 
// err = filtered speech signal 
wo = wienerF(v1, s, L, err); 
openPlot("Filtered Speech"); 
penS(14,1,0,0,0); 
ploty(0, 1, err, Sizeof(err)); 
yLabel("AMPLITUDE",0); 
xLabel("Sample Number"); 
Title("Filtered Speech"); 
grid(); 
pCRT();  
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 Noise Canceling using the Normalized LMS Algorithm* 
 
We can see from the previous example that a Wiener Filter does a wonderful job, however it’s 
computational intensive in that we have to compute the signal statistics in the 1st and 2nd 
moments.  It’s not suitable for real time applications, so we have to turn to a more lean 
computational algorithm.  That algorithm is the Least-Mean-Square Algorithm, commonly called 
the LMS algorithm.  The Normalized LMS algorithm used in this simulation for vector input u 
and desired output vector d for an optimal weight vector w that solves the following equation is 
given by,  

   2uw-dE min =w
 

 
and can be approximated iteratively via the recursion 
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Repeating the previous example where we have the same speech signal corrupted by noise, we 
have, 
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* [1] pp 178-182, [2] pp 139-143, [3] pp 367-372, [3] pp 50-56 
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Comparing this filtered output to the previous output of the previous example, we see that at the 
beginning that this LMS algorithm takes some time to achieve at satisfactory result, and that it’s 
not quite as good as the Wiener filter, however the computational cost is much lower. 

 Learning Curves for LMS and the NLMS Algorithms*  
 
The LMS algorithm for vector input u and desired output vector d for an optimal weight vector 
w that solves the following equation is given by,  
 

2uw-dE min =w
 

 
can be approximated iteratively via the recursion 
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We see that the computational cost of the standard LMS algorithm is less that the Normalized 
LMS algorithm, so a simulation is in order to determine leaning curves for a typical application, 
and how much we gain in terms of convergence time with the extra computational burden.  
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* [1[ 174-177 
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We see from the plot above, that the NLMS algorithm convergence rate is almost 3 times faster 
then the LMS algorithm.  From reference [1], the computational cost for complex values signals 
requires 8M+2 real multiplications and 8M real additions per iteration.  On the other hand, the 
cost for the NLMS algorithm is 8M+6 real multiplications, and 8M+5 real additions.  

 

 An Example of the Steepest Decent Algorithm* 
 
Normally in an Adaptive Filter text book, the author presents the Steepest Decent Algorithm 
before launching into the LMS Algorithm and its variants.  Having said that, the Steepest Decent 
Algorithm for vector input u and desired output vector d for an optimal weight vector w that 
solves the following equation is given by,  

 
2uw-dE min =w
 

 
can be approximated iteratively via the recursion 
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The plots from a simple sine wave with additive Gaussian noise are shown below.  The last plot 
shows a plot for a quadratic cost function, whereby the algorithm forces a convergence towards 
the bottom of the bowl along a gradient vector. 
 

                                                 
* [1] pp 142-147 
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The first top most plot shown the convergence as the algorithm converges towards the bottom of 
the bowl (but never gets to an exact solution). 

 Echo Cancelation using a Fast Block FFT Adaptive Filter* 
 
Using a Fast Block DFT Block Adaptive Filter,   the following simulation example shows a 
replicated sample of speech, and the output from running this type of adaptive filter. 
 

                                                 
* [1] pp 440-447, [2] pp 247-264, [3] pp 56-59 
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The shell script for this example is shown below. 

 
#include "sigsys.h" 
        
int fd, fw, cnt; 
vector sig, speech, room, echo; 
vector wb, y, e; 
vector Va[] = { 1 }; 
int  N, i, j, len; 
int  B = 32;  // block size of data 
int  M = 1024; // length of filter in full band 
float mu = 0.1; 
  
fd = open("c:\sliderule\specanal\speech.bin","rb"); 
cnt = readV(sig, 100000, 3, fd); 
close(fd); 
N = Sizeof(sig); 
len = (N/B)*B; 
speech = { }; 
for(i = 0; i < 8; i++) 
  speech = { speech, sig[0,len] }; 
len *= 8; 
fd = open("c:\SlideRule\digitalF\echo.bin", "rb"); 
cnt = readV(room, 100000, 5, fd); 
close(fd); 
echo = filter(room, Va, speech); 
wb = fbnlms(speech, echo, mu, B, M, e, y);  
  
openPlot("Speech Signal"); 
penS(14,1,0,0,0); 
ploty(0, 1, speech, len); 
grid(); 
xLabel("Sample Number"); 
Title("Speech Signal"); 
yLabel("AMPLITUDE",0);pCRT(); 
 
openPlot("Echo Signal"); 
penS(14,1,0,0,0); 
ploty(0, 1, echo, len); 
grid(); 
xLabel("Sample Number"); 
Title("Echo Signal"); 
yLabel("AMPLITUDE",0); 
pCRT(); 
 
openPlot("error signal"); 
Title("Filtered Echo signal using FFT-block adaptive filter and \epsilon-
NLMS (\mu = 0.1)"); 
ploty(0, 1, e, Sizeof(e));  
yLabel("Amplitude", 1); 
grid(); 
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System Identification using an Adaptive Filter* 

 
Mathematical models are fundamental to science and engineering fields.  An adaptive filter used 
for providing a linear model of an unknown Plant, is a powerful tool.  Note that if the Plant is 
dynamic in nature (i.e., time varying), that the model output will be time varying.  Below is a 
block diagram for determining the system identification of an unknown Plant. 
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The following example shows some plots using this technique. 
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A 16-QAM Decision Directed Equalizer using NLMS* 
 
The block diagram for this simulation is as follows.  
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The following are plots from a simulation of the above mentioned title.  The shell scripts for this  
simulation can be found under the AdaptiveFilter tile on the main menu. 
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A Blind QPSK Equalizer using Constant Modulus Alg. CMA2-2* 
 
The following are plots using the CMA2-2 Blind Equalizer. 
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A Learning Curve for an Affine Projection Algorithm* 
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QPSK and Blind Equalizers* 

 
The following plots show a simulation of learning curves for some blind equalizers, and some 
plots of results of different equalizers. 
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 Chapter 13 - FEC Channel Coding 
 

Introduction 
 
In the modern world of digital computers and digital communications, error control has become 
an integral part in the design of modern communication and digital storage systems.  In fact, 
systems such as satellite communications, large scale digital storage systems, deep space 
communications, cell phones, etc., would be virtually impossible without this technology.  The 
basic technology is to add extra bits to a digital message or digital memory word that allows the 
receiver to perform error correction if the original message gets corrupted.  These extra bits are 
called Error-Correcting Codes. This chapter will present examples of some common error-
correcting codes used in the field of digital communications.  These examples will be presented 
more on the side of implementation details and the how-to, rather then on the mathematical 
theory.  For the mathematical theory and a through presentation of the underlying technology, 
the reader is referred to the excellent references at the end of this chapter. 
 

The Golay (24,12) Code* 
 
The Golay (23, 12) is a binary perfect code, and has a minimum distance of 7, and is capable of 
correcting any combination of 3 or fewer random errors in a block of 23 digits.  The (24, 12) 
Golay code is an extension of the (23, 12) Golay code with the addition of a parity-check bit to 
each code word.  This code has a minimum distance of 8, and is capable of correcting any 
combination of 3 or fewer random errors in a block of 24 digits, and detecting all error patterns 
of four digits.  It has been used widely in many communications systems, including the Voyager 
space probe (circa 1979).  This code is a systematic code, and has a generator matrix as follows, 
 

[ ]12  IPG =  
Its parity matrix is defined as, 

                                                 
* [1] pp 125-128, pp 175-179, [2] pp 369-370 
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1 1 1 0 1 1 1 0 0 0 1 0
1 1 0 1 1 1 0 0 0 1 0 1
1 0 1 1 1 0 0 0 1 0 1 1
1 1 1 1 0 0 0 1 0 1 1 0
1 1 1 0 0 0 1 0 1 1 0 1
1 1 0 0 0 1 0 1 1 0 1 1
1 0 0 0 1 0 1 1 0 1 1 1
1 0 0 1 0 1 1 0 1 1 1 0
1 0 1 0 1 1 0 1 1 1 0 0

11 0 1 1 0 1 1 1 0 0 0
1 0 1 1 0 1 1 1 0 0 0 1

  P  

 
 
 
To encode a 12-bit word in Slide-Rule, the user calls a function encodeGolay(u), which in turn 
calls subroutine getSynGolay(u).  Each bit in the parity code word is generated from a matrix 
equation (in a Galois Field) given by  pi =  u(i) P.  To decode a 24-bit word that’s been (24,12) 
Golay encoded, we call shell script function decodeGolay(uR), where uR is a 24-bit encoded 
word.  As stated above, this code is systematic where the upper 12-bits are the information bits, 
and the lower 12-bits are the generated code word.  A test suite (file golayTest.txt found in sub-
directory fec) generates all the 4096 bit combinations in a 12-bit word; then encodes these 12-bit 
words by a call to function encodeGolay(u); then injects a 1-bit error in each of the encoded 24-
bit words (uR); then calls function decodeGolay(uR) to decode each of the 4096 words, then 
checks for errors.  The process repeats for 2-bit errors, 3-bit errors, and finally 4-bit errors.  
Below is a print out of the results of this simulation. 
 

Demo of the (24,12)Golay Code 
 
 (1)  Generate 4096 12-bit patterns 
 (1b) Encode these patterns into 24-bit Golay (24,12) code(s) 
 (1c) A random 1 bit error in each code 
 (1d) Check for errors in the 4096 patterns 
 (2)  Repeat (1), but with 2 errors for each code 
 (3)  Repeat (1), but with 3 errors for each code 
 (4)  Repeat (1), but with 4 errors for each code 
 
 
 No errors detected for 1 bit error in code 
 
 No errors detected for 2 bit errors in code 
 
 No errors detected for 3 bit errors in code 
 
 4096 errors detected for 4 bit errors in code 

 
Note that the functions as stated above can be found in shell script file golay.txt which resides in 
sub-directory sigsys. 
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The BCH Error Correcting Cyclic Codes* 
 
The Bose, Chaudhuri, and Hocquenghen  (BCH) codes are a class of powerful random error-
correction cyclic codes..  These codes are an extension of the Hamming codes for multiple 
binary error correcting capabilities.  For a 1-bit error correcting code, the Hamming and BCH 
codes are equivalent for the same generator polynomial.  BCH codes are defined by the 
following: 
 

Block length:    n = 2m – 1, 
Number of parity-check digits n – k <= mt. 
Minimum distance   dmin >= 2t + 1 

 
From the above, we see that the code is capable of correcting any combination of t or fewer 
errors in a block of 2m-1 binary digits.  BCH codes are commonly referenced as BCH (n, k, t).  
As an example, the BCH code (255, 187, 9) has a block length of 255 bits, 187 message bits, and 
an error correction capability of 9 bits.  The g(x) generator polynomial for a t-error correcting 
BCH code of length 2m -1, is the lowest degree polynomial in GF(2) that has  

t232 ,,,, αααα L as its roots.  It turns out that the conjugates of the above sequence (i.e., the 
even powers of α  have the same roots as the odd powers.  For the minimum polynomial )(Xiφ  

of iα , the generator polynomial g(X) is defined as the least common multiple (LCM) of 
1231 ,),(),( −tXX φφφ L .  One way of getting the generator polynomial is to look up the 

polynomial in Appendix C of reference [1].  However, the octal digits sequences are rather 
lengthy, and the chance that one makes an error is large.  Beside, it’s a tedious process at best.  
At better way is to call a subroutine.  Such a subroutine exists in Slide-Rule,  namely function 
gen_polyBCH(m, n, k, t), where m is GF(2m), n is the block length (n = GF(2m)-1), k is the 
message length, and t is the number of errors that can be corrected in a block.  Before this 
subroutine is called, the user must call function initBCH(n, k, t, Ptype), where n is the block 
length, k is the message length, t is the error capability, and Ptype is either the big indian or little 
indian  sense of g(X).  This subroutine calls subroutine generate_gfBCH to generate the 
alpha_to and index_of lookup tables for doing arithmetic in a Galois Field.  Subroutine 
gen_polyBCH  finds the all the roots based on m and the value of t.  As an example, for m = 9, 
and for t = 3; then there’s the outer loop from 0 < i < t ; and an inner loop from 1 < j < m, that 
generates all the roots by doubling the previous starter root modulo n .  For the first iteration in 
the outer loop for this example, the roots go 1, 2, 4, 8, 16, 32, 64, 128, and 256.  For the next 
iteration, the roots go 3, 6, 12, 24, 48, 96, 192, 284, 257, and the last sequence for this example, 
the  roots go 5, 10, 20, 40, 80, 160, 320, 129, 258.    Note that after each iteration of the inter 
loop, a check is made such that for any root generated in the inner loop that matches a root in the 
stored roots array, then none of the roots generated in that inner loop are stored in the roots array.  
Otherwise, all the roots for that iteration are stored in the roots array. When this process is 
complete, we then generate the generator polynomial.  The following is a listing of 
gen_polyBCH which shows how g(X) is generated.  Note all of the subroutines as described 
above are in shell script file bch as found in folder sigsys under the SlideRule directory. 

 
void gen_polyBCH(int m, int nn, int k, int t) 
{ 
 int   alphaP[256][10], roots[1024]; 
 int i, j, ll, kk, tmp, numBits; 

                                                 
* [1] pp 194-209, [2] 370-374 
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 int rootF, ii, jj, reg, cnt; 
  
 // generate alpha powers 
 alphaP[0][0] = 1; 
 for(i = 0, numBits = 0; i < t; i++) { 
  for(j = 1; j < m; j++) { 
     tmp = (alphaP[i][j-1]*2)%nn; 
     if(tmp != 0 && tmp != alphaP[i][0]) alphaP[i][j] = tmp; 
  } 
  // check for previous alpha powers in set 
  // if found, don't include alpha powers in roots[] 
  for(ll = 0, rootF = 0; ll < m; ll++) { 
     tmp = alphaP[i][ll]; 
     if(tmp == 0) break; 
     for(kk = 0; kk < i-1; kk++) { 
   for(j = 0; j < m; j++) 
      if(tmp == alphaP[kk][j]) { rootF = 1; break; } 
      if(rootF) break; 
     } 
     if(rootF) break; 
  } 
  if(!rootF) {  // Include alpha powers on root[] 
     for(j = 0; j < m; j++) { 
   tmp = alphaP[i][j]; 
   if(tmp != 0) { roots[numBits+1] = tmp; numBits++; } 
   else break; 
     } 
  } 
  alphaP[i+1][0] = alphaP[i][0]+2; 
 } 
 // Compute the generator polynomial 
 g[0] = alpha_to[roots[1]]; 
 g[1] = 1;  // g(x) = (X + roots[1]) initially 
 for (ii = 2; ii <= numBits; ii++) { 
   g[ii] = 1; 
   for (jj = ii - 1; jj > 0; jj--) 
     if (g[jj] != 0) 
       g[jj] = g[jj - 1] ^ alpha_to[(index_of[g[jj]] + roots[ii]) % nn]; 
     else 
       g[jj] = g[jj - 1]; 
   g[0] = alpha_to[(index_of[g[0]] + roots[ii]) % nn]; 
 } 
} 

 
For the encoding  of BCH codes, we call the following subroutine in Slide-Rule, namely 
encodeBCH(n, len, int *data, int *bb), where n = GF(2m - 1), len is the message length , data is 
the integer array of length len to be encoded, and bb is the parity array for storing the BCH code 
of length n – len. 
For the decoding of BCH codes, we call the following subroutine in Slide-Rule, namely 
decodeBCH(n, len, int t , int *recd), where n = GF(2m - 1), len is the message length before 
encoding, t is the error correcting capability of the code, and recd is the BCH encoded message 
of length n. 
The steps for decoding BCH codes are: 

1) Calculate the syndromes 
2) Determine the error location polynomial by the Berlekamp-Massey Algorithm 
3) Finding the roots and their location by the Chien Search 
4) Make the error corrections by Forney’s Algorithm 

Note that the functions as stated above can be found in shell script file bch.txt which resides in 
sub-directory sigsys.  In Slide-Rule, there’s a BCH test suite in file bchTest.txt found in sub-
directory fec. 
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This is a (511, 121, 58) binary BCH code 
BCH code(511,121,58) 
Generator polynomial (in octal): 
g(x) = 1541271357655772525604106044116552170135 
       4434750270764625323125324327677742325121 
       2771735535703734317405374311756764357501 
       74233577257 
Random data block, length = 121 
1st octal digit = 1 bit(s) 
0012541063115447246627031666733272125160 
3 
Coded data block (parity+data block), length = 511 
1st octal digit = 1 bit(s) 
0464531112341753440671457202042226167241 
0642710120053007736544210243762007002700 
4323405263542503322721551210133343031443 
3446466435201254106311544724662703166673 
32721251603 
Recieved data block, length = 511 
1st octal digit = 1 bit(s) 
0464533113341613440671457400042227167041 
2732730321053006736444214243720007202500 
4133405063546543024361557200532343232463 
3746426404205254126310544724660707166673 
22621251602 
Transmit data, length = 511 
1st octal digit = 1 bit(s) 
0464531112341753440671457202042226167241 
0642710120053007736544210243762007002700 
4323405263542503322721551210133343031443 
3446466435201254106311544724662703166673 
32721251603 
Recovered data, length = 511 
1st octal digit = 1 bit(s) 
0464531112341753440671457202042226167241 
0642710120053007736544210243762007002700 
4323405263542503322721551210133343031443 
3446466435201254106311544724662703166673 
32721251603 
Succesful decoding!!, number of errors = 58 
Error positions corrected 
510 486 480 457 449 423 410 394 387 384  
383 373 363 362 353 348 347 341 330 322  
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318 311 310 298 295 293 292 288 287 280  
274 260 246 242 230 221 209 205 190 177  
165 147 140 134 126 125 124 123 119 110  
 99  80  74  73  40  39  27  17  

 

A Reed-Solomon 255, 223 with erasures* 
 

The Reed-Solomon encoder/decoder is used widely in communication systems where burst 
errors occur.  The following test using a 255,223 code corrects 32 byte errors when the erasure 
positions in the block are known.  This test file can be found under the SideRule tile A Reed-
Solomon 255,223 with erasures tile.  Note that the functions as stated below in the code can be 
found in shell script file reedsol.txt which resides in sub-directory sigsys.  Other tests include A 
Reed-Solomon 255,239 without erasures, A Reed-Solomon 28,24 without erasures, and A Reed-
Solomon 32,28 with erasures. 

 
Int data[] = { // Test block of 223 
114,119, 24, 73, 97,112,242, 85,228,125, 
187,112,222,153, 71, 65, 59, 91,176, 92, 
106, 52,173,204, 65, 34,203,197,126,117, 
247, 18,115,192,197, 10,188,130, 60, 94, 
207, 54,  1,221,202,171, 92,205, 82,156, 
 74,  7,185,161,124,180,138,125, 22,142, 
 68,229,207,240, 13, 75, 35, 33,133,162, 
 61,115,132,174,130, 15,219,239, 50,137, 
210,113,144,155,183, 53,200,249, 92,157, 
194, 99,214, 80,146,192,156, 64,247, 73, 
110, 39,225, 19,139,  2,142, 57,161,  8, 
114,184,134,155, 49, 81, 17,120,120,228, 
210,146,191,176,173, 55,193,102, 67,159, 
 70,181,160,143, 36, 37,139, 13,170,239, 
 82, 73,145,180,110,254, 59, 95,154,122, 
224, 73, 61,191,147, 88,115,121, 62,174, 
 73,242, 19,211,164,165,129,143,186,104, 
155,176, 20,204, 62,242,136,  8,228,196, 
148, 49, 62, 40,  5,193, 94,243, 88,166, 
207,191,139,170, 97, 53,137,207,147,119, 
154,229, 93,217, 15, 55,202,239,141,199, 
 63,217, 22,229, 99, 49,247,122, 10, 13, 
 12,186, 209 
 }; 
 int i, j, count, parity[32], recd[255], eras_pos[32]; 
 int pp[] = { 1, 0, 1, 1, 1, 0, 0, 0, 1 }; 
 
initRSF(8, 255, 223, pp); 
encodeRSF(255, 223, 223, data, parity); 
Print(data); Print(parity); 
for(i = 0; i < 223; i++) recd[i] = data[i]; 
for(j = 0; i < 255; i++, j++) recd[i] = parity[j]; 
printf("Good Block "); Print(recd); 
for(i = 0, j = 5; i < 32; i++, j += 5) 
{ 
 recd[j] = 6; eras_pos[i] = j; 
} 
printf("Bad Block 32 errors "); Print(recd); 
count = decodeRSF(255, 223, 255, recd, eras_pos, 32); 
Print(count);  

                                                 
* [1] pp 237-254, [2] 437-469 
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printf("Corrected Block "); Print(recd); 
****************************************************************** 
Good Block array(int) -> recd(255) 
[ 
000000   114   119    24    73    97   112   242    85   228   125 
000010   187   112   222   153    71    65    59    91   176    92 
000020   106    52   173   204    65    34   203   197   126   117 
000030   247    18   115   192   197    10   188   130    60    94 
000040   207    54     1   221   202   171    92   205    82   156 
000050    74     7   185   161   124   180   138   125    22   142 
000060    68   229   207   240    13    75    35    33   133   162 
000070    61   115   132   174   130    15   219   239    50   137 
000080   210   113   144   155   183    53   200   249    92   157 
000090   194    99   214    80   146   192   156    64   247    73 
000100   110    39   225    19   139     2   142    57   161     8 
000110   114   184   134   155    49    81    17   120   120   228 
000120   210   146   191   176   173    55   193   102    67   159 
000130    70   181   160   143    36    37   139    13   170   239 
000140    82    73   145   180   110   254    59    95   154   122 
000150   224    73    61   191   147    88   115   121    62   174 
000160    73   242    19   211   164   165   129   143   186   104 
000170   155   176    20   204    62   242   136     8   228   196 
000180   148    49    62    40     5   193    94   243    88   166 
000190   207   191   139   170    97    53   137   207   147   119 
000200   154   229    93   217    15    55   202   239   141   199 
000210    63   217    22   229    99    49   247   122    10    13 
000220    12   186   209   146    52   115   140    94    85   208 
000230   186   234   164    44   111     0   247   210     6    28 
000240    32   157   156    38    54   106    68   167   162   253 
000250   154    50   184   219   216 
 
 
 
] 
Bad Block 32 errors array(int) -> recd(255) 
[ 
000000   114   119    24    73    97     6   242    85   228   125 
000010     6   112   222   153    71     6    59    91   176    92 
000020     6    52   173   204    65     6   203   197   126   117 
000030     6    18   115   192   197     6   188   130    60    94 
000040     6    54     1   221   202     6    92   205    82   156 
000050     6     7   185   161   124     6   138   125    22   142 
000060     6   229   207   240    13     6    35    33   133   162 
000070     6   115   132   174   130     6   219   239    50   137 
000080     6   113   144   155   183     6   200   249    92   157 
000090     6    99   214    80   146     6   156    64   247    73 
000100     6    39   225    19   139     6   142    57   161     8 
000110     6   184   134   155    49     6    17   120   120   228 
000120     6   146   191   176   173     6   193   102    67   159 
000130     6   181   160   143    36     6   139    13   170   239 
000140     6    73   145   180   110     6    59    95   154   122 
000150     6    73    61   191   147     6   115   121    62   174 
000160     6   242    19   211   164   165   129   143   186   104 
000170   155   176    20   204    62   242   136     8   228   196 
000180   148    49    62    40     5   193    94   243    88   166 
000190   207   191   139   170    97    53   137   207   147   119 
000200   154   229    93   217    15    55   202   239   141   199 
000210    63   217    22   229    99    49   247   122    10    13 
000220    12   186   209   146    52   115   140    94    85   208 
000230   186   234   164    44   111     0   247   210     6    28 
000240    32   157   156    38    54   106    68   167   162   253 
000250   154    50   184   219   216 
] 
count = 32 
Corrected Block array(int) -> recd(255) 
[ 
000000   114   119    24    73    97   112   242    85   228   125 
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000010   187   112   222   153    71    65    59    91   176    92 
000020   106    52   173   204    65    34   203   197   126   117 
000030   247    18   115   192   197    10   188   130    60    94 
000040   207    54     1   221   202   171    92   205    82   156 
000050    74     7   185   161   124   180   138   125    22   142 
000060    68   229   207   240    13    75    35    33   133   162 
000070    61   115   132   174   130    15   219   239    50   137 
000080   210   113   144   155   183    53   200   249    92   157 
000090   194    99   214    80   146   192   156    64   247    73 
000100   110    39   225    19   139     2   142    57   161     8 
000110   114   184   134   155    49    81    17   120   120   228 
000120   210   146   191   176   173    55   193   102    67   159 
000130    70   181   160   143    36    37   139    13   170   239 
000140    82    73   145   180   110   254    59    95   154   122 
000150   224    73    61   191   147    88   115   121    62   174 
000160    73   242    19   211   164   165   129   143   186   104 
000170   155   176    20   204    62   242   136     8   228   196 
000180   148    49    62    40     5   193    94   243    88   166 
000190   207   191   139   170    97    53   137   207   147   119 
000200   154   229    93   217    15    55   202   239   141   199 
000210    63   217    22   229    99    49   247   122    10    13 
000220    12   186   209   146    52   115   140    94    85   208 
000230   186   234   164    44   111     0   247   210     6    28 
000240    32   157   156    38    54   106    68   167   162   253 
000250   154    50   184   219   216 
] 
 

The Reed-Solomon CIRC* 
 

 
The Cross-Interleave Reed-Solomon Code (CIRC) is part of the standard compact disc (CD) 
digital audio system developed in 1979 by the Philips Corp. of the Netherlands and Sony Corp. 
of Japan, for the storage and reproduction of audio signals.  The audio signals (right and left 
channels) are alternately sampled by a 16-bit A/D at 44,100 samples/sec., Reed-Solomon 
encoded, and recorded on an audio CD disc.  The encoding scheme uses two Reed-Solomon 
codes, namely an outer RS (28, 24) code, and an inner RS (32, 28) code, with interleaving.  Both 
codes are shortened versions of the RS (255,251) code.  Each code is capable of correcting two 
bytes out of a block, or 4 bytes if the error locations (erasures) are known.  Below is a block 
diagram (from [2], pgs 469-475) of the CIRC encoder and decoder. 
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* [2] pp 469-475 
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The details of the encoder and decoder can be found below in the labeled block diagrams.  In 
order to investigate the CIRC properties and inter-workings in terms of the error correcting code 
capabilities of the CIRC algorithm, we perform a simulation using the Reed-Solomon shortened 
codes as stated above, and implement the detailed block diagrams as found below for the CIRC 
encoder and decoder. We first generate two sine waves with the number of appropriate samples, 
where the right channels maximum peak is approximately half the range of a 16-bit A/D, and the 
left channel is approximately one quarter the range of a 16-bit A/D, and with both channels in 
phase.  A plot of the input follows. 
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For the first part of the simulation we encode the inputs and perform the CIRC encoding, and 
then follow with the CIRC decoding scheme, but with no erasures.  Some plots follow. 
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We see on the left plot, that if 2064 consecutive bits (or 258 bytes) are corrupted on the CD, that 
the CIRC algorithm (with erasures turned off) successfully restores the corrupted data, while for 
300 bytes (or 2400 bits) corrupted, that the output audio signals are garbled.  . 
 
We repeat the simulation, but with erasures turned on.    Some plots follow. 
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Now for this case, we see on the left plot, that if 4128 consecutive bits (or 516 bytes) are 
corrupted on the CD, that the CIRC algorithm (with erasures turned on) successfully restores the 
corrupted data, while for 550 bytes (or 4400 bits) corrupted, that the output audio signals are 
garbled.  Referring the detailed decoder block diagram,  for the Inner decoder D1, when the RS 
(32.28) fails (i.e., more than 2 correctable errors detected, that we mark each of the 28 bytes as 
an erasure before the data bytes are input to the Cross de-interleaver.  Notice that each byte 
arrives as input to the Outer decoder D2 at different times, such that the RS (28, 24) decoder can 
successfully correct up to four erasures. If more than 4 erasures, then he Outer decoder simply 
passes the marked data bytes on to the Delta de-interleaver. 
Now, since each stereo channel is sampled at 22050 16-bit samples per second, or approximately 
45 micro-seconds between samples, we can perform linear interpolation to restore a corrected 
sample, i.e., we just grab the next good sample, add the two/ and divide by two.   Some plots 
follow. 
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Remarks on the Reed-Solomon Encoder and Decoder 
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The simulation as presented above was done by calling fast versions (i.e., internal functions) of 
the Reed-Solomon encoder and decoder.  However, a shell script version of the same functions 
can be found as file reedsol.txt in sub-directory sigsys.  The code handles shortened versions of 
RS codes, and has been tested for the 28, 24 and 32, 28 RS codes.  Because of the shortened 
codes, the reader should note that if examining the code, that the following area’s have been 
modified because of shortened codes; the syndrome calculation of the received message (or 
polynomial); the calculation of the erasure location polynomial if erasures, the calculation of the 
error locations in the Chien Search.  Also, in the CIRC simulation, its was found that the RS 
32,28 decoder incorrectly reported that it had corrected 2 bytes, but upon closer examination, it 
was found not to be true.  This happened very rarely, and when every other byte in the 32 byte 
block was corrupted.  Further analysis found that the error was data dependent, and that the error 
locations reported by the Chien Search were found beyond the 32 byte boundary.  So after the 
Chien Search, code was put into the algorithm that if doing a shortened code, and any error 
location reported in ‘no-mans land’, that the algorithm reports a decode failure. 

1

1

1

1

1

1

1

1

1

1

1

1

1

1
 1 D

2 D

3 D

4 D

5 D

6 D

7 D

8 D

9 D

10D

11D

12D

13D

14D

15D

16D

17D

18D

19D

20D

21D

22D

23D

24D

25D

26D

27D

1

2
2

2
2

2
2

2
2

2
2

2
2

3

0

2
1

4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23

3

0

2
1

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

o
o
o
o

o
o
o
o

1

Outer
encoder

E2

D = 4 symbols

L

R

L

R

L

R

L

R

L

R

L

R

Inner
encoder

E1

 
Encoder Block Diagram 

 



               218 

3

0

2
1

4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

1

1

1

1

1

1

1

1

1

1

1

1

1

1

o
o
o
o

1

1

o
o
o
o

Inner
decoder

D1

27D

26D

25D

24D

23D

22D

21D

20D

19D

18D

17D

16D

15D

14D

13D

12D

11D

10D

9 D

8 D

7 D

6 D

5 D

4 D

3 D

2 D

 1 D

Outer
decoder

D2

D = 4 symbols

2
2

2
2

3

0

2
1

4
5
6
7
8
9

10
11

12
13
14
15
16
17
18
19
20
21
22
23

2
2

2
2

2
2

2
2

L

R

L

R

L

R

L

R

L

R

L

R

 
 
Decoder Block Diagram 

 

A Rate K = 1/2 Viterbi Decoder* 
 

A Rate = ½ Viterbi encoder/decoder exits in Slide-Rule as a fast internal version for simulations, 
and a shell script version with the same functional code and with identical results and prototypes 
(except name).  The shell script version allows users to examine the code implementation, since 
trying to figure out the how a Viterbi decoder works from a text book for someone new to this 
algorithm, is not a trivial task.  The current version in Slide-Rule allows for constraint lengths of  
K = 3, 5, 7, and 9.  Also, the decoder outputs after decoding an entire message, and doesn’t 
output a continuous stream after the decoder has reached 5K symbols.  Below is a BER plot of a 
simulation of a BPSK channel with additive Gaussian noise for difference constraint lengths K 
and Eb/No (dB) levels. 
 

                                                 
* [1] pp 515-598, [2] 383-430, [5] 153-209,  [4] 
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Remarks on the Viterbi Encoder and Decoder 
 
The Rate = ½ Viterbi Encoder as implemented in Slide-Rule, encodes an additional K-1 message 
symbols, with the result that an additional 2*(K-1) bits are output from the encoding process.  As an 
example, for a 100-BPSK message, the encoder outputs 208-bits for K = 5.  The reason for this is to bring 
the decoder back to the zero-state, since it’s started off in the zero-state.  Note that for an un-coded 
channel, ES/NO dB = EB/NO dB.  However, for BPSK we have ES/NO dB = EB/NO dB. + 10log10(k/n) 
=  EB/NO dB. + 10log10(1/2)  = EB/NO  dB. – 3.01 dB.  In an AWGN channel, the signal is corrupted 
by additive Gaussian noise, which has a power spectrum of N0/2 watts/Hz.  The variance σ2 of this noise 
is equal to N0/2.  If the energy per symbol ES is set equal to 1, then ES/N0 = 1/2σ2.  Then 

10/) /(10 dBNoEsSNR =  such that the Gaussian noise level is set by )*2/(1 SNR=σ  times the output of 
a Gaussian noise source of power level 1.  Note for the data points in the above simulation, that each data 
point represent a random 100-bit encoded message repeated 20,000 times.  However, for the K = 9 at 
EBNO = 4 dB, only 1 decoder error was forth coming for a 100-bit message repeated 200,000 times.  Note, 
besides the fast internal coded Viterbi Encoder/Decode, there exists a shell script version that can be 
found in sub-directory sigsys with the file name of viterbi.txt.  The user can run additional Viterbi  
simulations running A Viterbi Rate ½ K = 7(133,177) Demo and A Viterbi Rate 2/3 K = 7(133,177) 
(punctured) shell scripts by selecting these tiles under the FEC/OFDM tile under the main menu.  We 
note that the majority of block codes are obtained by algebraic means, while convolution codes are found 
only by computer simulations. Only codes with no catastrophic error propagation are considered. For the 
punctured code above, we note that this is not the best Rate = 2/3 K = 7(133,177) code.  A better 
punctured code would be R = 7 (163,135), 163 which has a free distance of 6.*  
 

                                                 
* [5] pp 202-209 
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Turbo Coding* 
 
Turbo coding is an iterative decoding technology that is widely used in deep space 
communication applications. These codes have exceptionally good performance for block 
lengths greater then about 10000 bits, and with iterative decoding, can achieve BER’s as low as 
10-5 in SNR’s within 1 dB of the Shannon limit.  For this example, we turn to the logmap 
algorithm, which is a modification of the BCJR algorithm devised by Bahl, Cocke, Jelinck, and 
Raviv in 1974.  In particular, the logmap algorithm substitutes additions for multiplications to 
reduce the computational burden and to solve overflow issues.  As shown in the block diagram 
below, the algorithm uses a recursive encoding technique, to generate a bit stream 3 times the 
length of the input data stream. 
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The following is the state transition diagram and trellis for a (1,5,7) RSC code. 
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*  [1] pp 826-844, [5] 213-245 



  221 

The MAP decoding algorithm is based on the Log Likelihood Ratio (LLR), or 
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Incorporating the trellis structure as shown above, this can be reformulated as follows: 
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First kγ is computed as follows: 
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Since the coding rate for BPSK R = ½, the tern Lc is calculated as follows: 
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Both kα  and kβ  are computed recusively as follows: 

      ∑ −= ' 
'

1
' )(),()( Sall kkk SSSS αγα  0)0(,1)0( 00 =≠= Sαα   

  )(),()(   
''

1 SSSS kSall kk βγβ ∑=−  0)0(,1)0( =≠= snN ββ  
Note from the above equations, that S’ is computed forward (to the next state) through the trellis, 
while S is computed backward (from the previous state).  Note also that α is computed from the 
beginning of the bit stream, while β is computed from the end of the bit stream and backwards to 
the beginning.  The equations as presented above are in essence the BCJR algorithm.  We can cut 
down on the number of multiplies and overflow conditions, by taking the natural logarithm and 
exponentials of the above equations.  So we have as follows: 
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Using the following approximation and the Jacobian logarithm to avoid summation of 
exponentials, we have: 
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Based on the above equations, we have, 
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Based on the above, the user can view shell script file logmap.txt found in sub-directory sigsys to 
get a clearer understanding of the logmap turbo encoder/decoder algorithm. For an example of  
this algorithm, a simulation follows. The interleaver used in this example is a helical interleaver 
of length 24 given by the following: 
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1,6,11,16,21,2,7,12,17,22,3,8,13,18,23,4,9,14,19,24,5,10,15,20 
 
For the simulation, we run two cases as follows: 
 

1) A random serial bit stream of 0’s and 1’s of length 1784 bits is generated.  This data stream is 
then converted into 223 8-bit words.  This data generates a 32 byte parity block by calling a Reed 
Solomon 255,223 encoder (encodeRS).  The parity block is then converted into a serial bit 
stream.  A bit stream (C1k) is then generated which consists of 24 leading 0’s; the 1784 random 
bit stream; the RS serial parity stream; and finally 24 trailing 0’s for a total length of 2088 bits of 
0’s and 1’s.  We then RSC generate C2k as shown is the Turbo encoder block diagram.  C3k is 
then interleaved and RSC generated.  We then take the C1k bit stream and interleave it to form 
C1kI. The data streams are then converted to BPSK by multiplying by -2 and adding +1.  
Gaussian noise is then added as previously discussed under Remarks on the Viterbi Encoder and 
Decoder. These  streams* are then input into the logmap iterative turbo decoder a shown is the 
block diagram below.  

Decoder IIInterleaveDecoder I 

Deinterleave Ext LLR

Ext LLRC1k

C2k

C3k

Interleave C1kI

*

*

*

*

 
Structure of turbo decoder 

The simulation is then run, and only turbo decoder errors are counted for the 2040 bits 
within the zero header and trailer padding.  After the turbo errors are counted, the Reed 
Solomon 255,223 decoder is run, and only errors in the 223 data block are counted. 
 

2) In a similar manner, we run a random bit stream of  65520, and pad with 24 leading and 
24 trailing zeros.  For this case, we do just turbo decoding. 

 

Remarks on the Simulation 
 

It was found through a number of trials, that padding of equal length to the size of the interleaver (24), 
gave better results.  This is probably do to the fact that the Lext array started off at zero.  It was also noted 
that the errors generated during simulation runs occurred in patches, much like a green lawn, where grass 
just doesn’t seem to grow in certain areas.  That was the primary reason the Reed Solomon 
encoder/decoder (255,223) was incorporated to improve the BER level per Eb/N0 noise level.  The code 
for the simulation runs used a fast version of the algorithm, namely logmapF.  The simulation for the 
message length of 2040 can be found as shell script file testLogMapF.txt in sub-directory fec. The code as 
shown in shell script file logmap.txt is specific to the RSC (1,5,7) recursive code, which should make it 
easily for the user to incorporate this example into a high speed signal processor or in an ASIC design.  
We note that the term  ( )||1ln yxe −−+  could be implemented in a LUT, which would greatly speed 
up a custom design and implementation. One could also implement the max-logmap algorithm, 
but suffer a 0.35 dB performance loss, as documented in the literature.   

                                                 
* Gaussian noise added at Eb/N0 level 
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The results for 7 iterations (which end in Decoder I) are shown in the following plot.  Note for 
case 1, that averages are taken over 100 messages, while for case 2, an average is taken over 10 
messages.  
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 Chapter 14 - Matrix/Vector Computations 

Introduction 
 

 
This chapter presents some basic Matrix/Vectors Computations that arise over and over again in the fields 
of science and engineering.  Functions such as the singular value decomposition (svd), the qr function, 
etc., are interfaced to the LAPACK routines (version 3.1.1, 2/26/2007).  This library was built from the C 
code downloaded from Netlib, and compiled under a C++ compiler.  It consists of the double precision 
and complex double precision modules, and consists of ~ 300,000 lines of code.  The current 
implementation in Slide-Rule is a small subset of this library, but can easily be expanded for more 
advanced implementations such as the sparse, banded, etc. matrix methods. The original LAPACK 
project was funded by the NSF with an initial release in February, 1992.  Contributors include: University 
of Tennessee; Oak Ridge National Laboratory; Argonne National Laboratory; University of California, 
Berkeley; Cray Research, Inc.; Numerical Algorithms Group Ltd.; Rice University; University of 
Kentucky; Courant Institute of Mathematical Sciences, New York University; and others.  Supersedes 
LINPACK, EISPACK, and the BLAS. 
 
The intent of this chapter is to show how to use these functions, and not go into the mathematical theory.  
For that, the reader is referred to the excellent references provided at the end of this chapter.  Note, the 
prototypes to these functions can be found in the software under function key F7 -> Matrix/Vector 
Operations. 
 

The QR Decomposition with Column Pivoting 
 
The QR decomposition or factorization of an m-by-n matrix A is given by A = QRPT, where matrix Q is 
orthogonal, matrix R is upper triangular, and P is a permutation matrix.*  An example follows. 
 

matrix A[][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; 
matrix Q, R, P, X; 
matcmplx Ac[][3] = { 19+19j,-1-1j,1+1j,-2-2j,1+1j,-20-20j,-1-1j,1+1j, 
    2+2j,1+1j,21+21j,-1-1j }; 
matcmplx Qc, Rc, Xc; 
 
printf("Input "); Print(A); 
printf("Rank of A = %f\n", rank(A)); 
P = qr(A, Q, R); printf("Orthogonal output "); Print(Q); 
printf("Upper Triangular output "); Print(R); 
printf("Permutation "); Print(P); 
X = Q*R*P’; printf("Q*R*P’ = "); Print(X); 
 
P = qr(Ac, Qc, Rc); 
printf("Orthogonal output "); Print(Qc); 
printf("Upper Triangular output "); Print(Rc); 
printf("Permutation "); Print(P); 
Xc = Qc*Rc*P’; printf("Qc*Rc*P’ = "); Print(Xc); 
********************************************************************* 
Input = matrix -> A(4,3) 
[row 
0000           1           2           3 
0001           4           5           6 
0002           7           8           9 
0003          10          11          12 
] 

                                                 
* [1] pp223-233, 248-250 
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Rank of A = 2.000000 
Orthogonal output matrix -> Q(4,4) 
[row 
0000    -0.18257     -0.8165           0           0 
0001    -0.36515    -0.40825           0           0 
0002    -0.54772           0           0           0 
0003     -0.7303     0.40825           0           0 
] 
Upper Triangular output matrix -> R(4,3) 
[row 
0000     -16.432      -12.78     -14.606 
0001           0       1.633      0.8165 
0002           0           0           0 
0003           0           0           0 
] 
Permutation matrix -> P(3,3) 
[row 
0000           0           1           0 
0001           0           0           1 
0002           1           0           0 
] 
Q*R*P' = matrix -> X(4,3) 
[row 
0000           1           2           3 
0001           4           5           6 
0002           7           8           9 
0003          10          11          12 
] 
Input = matrix(cmplx) -> Ac(4,3) 
[row 
0000          19        +19j          -1         -1j           1         +1j 
0001          -2         -2j           1         +1j         -20        -20j 
0002          -1         -1j           1         +1j           2         +2j 
0003           1         +1j          21        +21j          -1         -1j 
] 
Rank of Ac = 3.000000 
Orthogonal output matrix(cmplx) -> Qc(4,4) 
[row 
0000   -0.033558  -0.033558j    0.032074  +0.032074j     0.70405   +0.70405j  0  +0j 
0001    0.033558  +0.033558j    -0.70182   -0.70182j    0.028674  +0.028674j  0  +0j 
0002    0.033558  +0.033558j    0.073675  +0.073675j   -0.048058  -0.048058j  0  +0j 
0003     0.70471   +0.70471j    0.031439  +0.031439j    0.034449  +0.034449j  0  +0j 
] 
Upper Triangular output matrix(cmplx) -> Rc(4,3) 
[row 
0000      29.799         +0j     -2.6846         +0j   -0.067116         +0j 
0001           0         +0j      28.369         +0j      3.9416         +0j 
0002           0         +0j           0         +0j      26.804         +0j 
0003           0         +0j           0         +0j           0         +0j 
] 
Permutation matrix -> P(3,3) 
[row 
0000           0           0           1 
0001           1           0           0 
0002           0           1           0 
] 
Qc*Rc*P' = matrix(cmplx) -> Xc(4,3) 
[row 
0000          19        +19j          -1         -1j           1         +1j 
0001          -2         -2j           1         +1j         -20        -20j 
0002          -1         -1j           1         +1j           2         +2j 
0003           1         +1j          21        +21j          -1         -1j 
] 
********************************************************************* 
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Cholesky Factorization 
 
The Cholesky factorization for a symmetric positive definite matrix A, is given as A = BBT, where B is a 
unique lower triangular matrix with positive diagonals entries.  A matrix is positive definite if xTAx > 0 
for all nonzero x.* An example follows. 
 

#include "pascal.txt" 
matrix A, B, X; 
  
A = pascal(9, 0) printf("Input Matrix = "); Print(A); 
printf("Rank of A = %d\n", rank(A)); 
printf("det(A) = %f\n", det(A)); 
B = chol(A); Print(B); 
X = B*B'; printf("B*B' = "); Print(X); 
*************************************************************************** 
Input = matrix -> A(9,9) 
 [row 
0000           1      1      1      1      1      1      1      1      1 
0001           1      2      3      4      5      6      7      8      9 
0002           1      3      6     10     15     21     28     36     45 
0003           1      4     10     20     35     56     84    120    165 
0004           1      5     15     35     70    126    210    330    495 
0005           1      6     21     56    126    252    462    792   1287 
0006           1      7     28     84    210    462    924   1716   3003 
0007           1      8     36    120    330    792   1716   3432   6435 
0008           1      9     45    165    495   1287   3003   6435  12870 
] 
Rank of A = 9 
det(A) = 1.000000 
matrix -> B(9,9) 
[row 
0000           1      0      0      0      0      0      0      0      0 
0001           1      1      0      0      0      0      0      0      0 
0002           1      2      1      0      0      0      0      0      0 
0003           1      3      3      1      0      0      0      0      0 
0004           1      4      6      4      1      0      0      0      0 
0005           1      5     10     10      5      1      0      0      0 
0006           1      6     15     20     15      6      1      0      0 
0007           1      7     21     35     35     21      7      1      0 
0008           1      8     28     56     70     56     28      8      1 
] 
B*B' = matrix -> X(9,9) 
[row 
0000           1      1      1      1      1      1      1      1      1 
0001           1      2      3      4      5      6      7      8      9 
0002           1      3      6     10     15     21     28     36     45 
0003           1      4     10     20     35     56     84    120    165 
0004           1      5     15     35     70    126    210    330    495 
0005           1      6     21     56    126    252    462    792   1287 
0006           1      7     28     84    210    462    924   1716   3003 
0007           1      8     36    120    330    792   1716   3432   6435 
0008           1      9     45    165    495   1287   3003   6435  12870 
] 

 

The Complete Orthogonal Decomposition with Column Pivoting 
 
The Complete Orthogonal Decomposition of a matrix is given by A = Q*T*ZT*PT,  where matrix Q is 
orthogonal, matrix T is upper triangular, and P is a permutation matrix.**  An example follows. 

                                                 
* [1] pp143-146 
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matrix A[][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; 
matrix A, Q, T, Z, P, X; 
matcmplx Qc, Tc, Zc, Xc; 
 
P = cod(A, Q, T, Z); printf("Orthogonal output "); Print(Q); 
printf("Upper Triangular output "); Print(T); 
printf("Permutation "); Print(P); 
printf("Z = "); Print(Z); 
X = Q*T*Z'P’; 
printf("Q*T*Z'P’ = "); Print(X) 
 
printf("Input = "); Print(Ac); 
P = cod(Ac, Qc, Tc, Zc); 
printf("Orthogonal output "); Print(Qc); 
printf("Upper Triangular output "); Print(Tc); 
printf("Permutation "); Print(P); 
Print(Zc); 
Xc = Qc*Tc*Zc'*P'; 
printf("Q*T*Z'*P' = "); Print(Xc); 
*********************************************************** 
Input = matrix -> A(3,4) 
[row 
0000           1           2           3           4 
0001           5           6           7           8 
0002           9          10          11          12 
] 
Orthogonal output matrix -> Q(3,3) 
[row 
0000    -0.26726     0.87287           0 
0001    -0.53452     0.21822           0 
0002    -0.80178    -0.43644           0 
] 
Upper Triangular output matrix -> T(3,3) 
[row 
0000      15.843      16.116      11.546 
0001           0      2.4057     0.46084 
0002           0           0           0 
] 
Permutation matrix -> P(4,4) 
[row 
0000           0           1           0           0 
0001           0           0           0           1 
0002           0           0           1           0 
0003           1           0           0           0 
] 
Z = matrix -> Z(4,3) 
[row 
0000    -0.94471           0           0 
0001     0.18938    -0.81636           0 
0002   -0.038252   -0.082528    -0.98974 
0003    -0.26494    -0.57161      0.1429 
] 
Q*T*Z'P' = matrix -> X(3,4) 
[row 
0000           1           2           3           4 
0001           5           6           7           8 
0002           9          10          11          12 
] 
Input = matrix(cmplx) -> Ac(3,4) 
[row 
0000       1     +1j      2     +2j      3     +3j      4     +4j 
0001       5     +5j      6     +6j      7     +7j      8     +8j 
0002       9     +9j      10   +10j     11    +11j      12   +12j 

                                                                                                                                                                                     
** [1] pp250-253 
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] 
Orthogonal output matrix(cmplx) -> Qc(3,3) 
[row 
0000    -0.18898   -0.18898j    -0.61721   -0.61721j     -0.2846   -0.29269j 
0001    -0.37796   -0.37796j     -0.1543    -0.1543j      0.5692   +0.58538j 
0002    -0.56695   -0.56695j     0.30861   +0.30861j     -0.2846   -0.29269j 
] 
Upper Triangular output matrix(cmplx) -> Tc(3,3) 
[row 
0000      24.819         +0j      19.368    +1.3977j      16.689    -4.0508j 
0001           0         +0j     -2.9345         +0j     -1.8301   +0.19845j 
0002           0         +0j           0         +0j           0         +0j 
] 
Permutation matrix -> P(4,4) 
[row 
0000           0           1           0           0 
0001           0           0           1           0 
0002           0           0           0           1 
0003           1           0           0           0 
] 
matrix(cmplx) -> Zc(4,3) 
[row 
0000     -0.8528         +0j           0         +0j           0         +0j 
0001      0.1599    -0.0533j    -0.94648         +0j           0         +0j 
0002           0    +0.1066j   -0.022011  +0.066034j    -0.97647         +0j 
0003     -0.4797    -0.0533j    -0.28615   -0.13207j   -0.023816   +0.21435j 
] 
Q*T*Z'*P' = matrix(cmplx) -> Xc(3,4) 
[row 
0000       1     +1j      2     +2j      3     +3j      4     +4j 
0001       5     +5j      6     +6j      7     +7j      8     +8j 
0002       9     +9j      10   +10j     11    +11j      12   +12j 
 
] 

 
 
A Determinate Example 
 
For a square matrix A, then its determinate is given by det(A) = a.  An example follows. 
 

matrix A[][6] = { -5, 6, 1, -1, 0, 2, 
        1, 3,-1, -1, 3, 1, 
        4, 2,-2,  1, 1, 0, 
        0, 0, 3,  1,-2, 4, 
        1, 0, 0, -2, 1, 7, 
        0, 0, 1,  1,-1, 7 }; 
float Adet; 
 
printf("Input = "); Print(A); 
Adet = det(A); printf("Determinant of A = %.5f\n", Adet ); 
******************************************************** 
Input = matrix -> B(6,6) 
[row 
0000     -5      6      1     -1      0      2 
0001      1      3     -1     -1      3      1 
0002      4      2     -2      1      1      0 
0003      0      0      3      1     -2      4 
0004      1      0      0     -2      1      7 
0005      0      0      1      1     -1      7 
] 

Determinant of B = -3144.00000 
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The Singular Value Decomposition 
 
For a real m-by-n matrix A, then there exists orthogonal matrices U and V such that   
UAVT =  0    where,,,,diag( 2121 ≥≥≥≥ pp σσσσσσ LL .  The iσ are the singular values of A, 
and the ui and vi are the ith left singular vector and right ith singular vector respectively.  Note that when 
we talk about the vectors of U and V, we’re referring to the columns’ of U and V.*  An example follows. 
 

matrix A[][3] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; 
matrix U, V, S, Achk; 
 
S = svd(A, U, V); printf("S = svd(A, U, V); "); Print(S); 
printf("Left singular vectors of A "); Print(U); 
printf("Right singular vectors of A "); Print(V); 
Achk = U*S*V'; 
printf("Achk = U*S*V'; "); Print(Achk); 
************************************************************* 
Input matrix -> A(4,3) 
[row 
0000           1           2           3 
0001           4           5           6 
0002           7           8           9 
0003          10          11          12 
] 
S = svd(A, U, V);  
matrix -> S(4,3) 
[row 
0000      25.462           0           0 
0001           0      1.2907           0 
0002           0           0           0 
0003           0           0           0 
] 
Left singular vectors of A matrix -> U(4,4) 
[row 
0000    -0.14088    -0.82471     0.52548    -0.15452 
0001    -0.34395    -0.42626    -0.58546     0.59769 
0002    -0.54702   -0.027814     -0.4055    -0.73183 
0003    -0.75009     0.37064     0.46549     0.28865 
] 
Right singular vectors of A matrix -> V(3,3) 
[row 
0000    -0.50453     0.76078     0.40825 
0001    -0.57452    0.057141     -0.8165 
0002     -0.6445    -0.64649     0.40825 
] 
Achk = U*S*V'; matrix -> Achk(4,3) 
[row 
0000           1           2           3 
0001           4           5           6 
0002           7           8           9 
0003          10          11          12 
] 

 

The Hessenburg form of a Matrix 
 
The Hessenberg decomposition of a square matrix A is given by A = B*QoHQo

T*inv(B), where matrix Q0 
is orthogonal, and matrix B is a balancing matrix.  Without the balancing matrix, H = Qo

TAQo.**  An 
example follows. 

                                                 
* [1] pp 253-254 
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#include "magic.txt" 
matrix A, H, Q, B, Chk; 
 
A = magic(5); printf("Input = "); Print(A); 
H = hess(A, Q, B); printf("The Hessenburg form of A "); Print(H); 
printf("Orthogonal output "); Print(Q); 
printf("Balancing  "); Print(B); 
Chk = B*Q*H*Q'*inv(B); 
printf("Chk = B*Q*H*Q'*inv(B);  "); Print(Chk); 
******************************************************************** 
Input = matrix -> A(5,5) 
[row 
0000          17          24           1           8          15 
0001          23           5           7          14          16 
0002           4           6          13          20          22 
0003          10          12          19          21           3 
0004          11          18          25           2           9 
] 
The Hessenburg form of A matrix -> H(5,5) 
[row 
0000          17     -28.941       1.847     -4.4603      2.2572 
0001     -27.677       33.94      26.187      -2.228      1.2675 
0002           0      25.096      20.687     -6.6055     -0.1973 
0003           0           0      -5.963     -16.816     -12.445 
0004           0           0           0     -9.0122      10.189 
] 
Orthogonal output matrix -> Q(5,5) 
[row 
0000           1           0           0           0           0 
0001           0    -0.83102     0.46304     0.27429     0.14057 
0002           0    -0.14453    -0.71444     0.59186     0.34408 
0003           0    -0.36131    -0.36799   -0.034767    -0.85605 
0004           0    -0.39745    -0.37384    -0.75714      0.3592 
] 
Balancing  matrix -> B(5,5) 
[row 
0000           1           0           0           0           0 
0001           0           1           0           0           0 
0002           0           0           1           0           0 
0003           0           0           0           1           0 
0004           0           0           0           0           1 
] 
Chk = B*Q*H*Q'*inv(B);  matrix -> Chk(5,5) 
[row 
0000          17          24           1           8          15 
0001          23           5           7          14          16 
0002           4           6          13          20          22 
0003          10          12          19          21           3 
0004          11          18          25           2           9 
] 

 

Schur Decomposition  
 
The Schur decomposition of a matrix is given by A = B*Z*S*ZT*inv(B), where Z is orthogonal, and 
matrix B is a balancing matrix.  An example follows. 
 

#include "matrices.h" 
matrix A, S, Z, B, Achk; 
 

                                                                                                                                                                                     
** [1] pp 344-350 



               232 

A = gallery(5); printf("Input "); Print(A); 
S = schur(A, Z, B); printf("Schur matrix "); Print(S);  
printf("Orthogonal (an output) "); Print(Z); 
printf("Balancing transform (an output) "); Print(B); 
Achk = B*Z*S*Z'*inv(B); 
printf("Achk = B*Z*S*Z'*inv(B) = "); Print(Achk); 

************************************************************** 
Input matrix -> A(5,5) 
[row 
0000          -9          11         -21          63        -252 
0001          70         -69         141        -421        1684 
0002        -575         575       -1149        3451      -13801 
0003        3891       -3891        7782      -23345       93365 
0004        1024       -1024        2048       -6144       24572 
] 
Schur matrix matrix -> S(5,5) 
[row 
0000   -0.026601      119.06     -299.24     -627.97       49332 
0001 -3.2435e-06   -0.026601      5.7129      9.9908     -826.04 
0002           0           0    0.010461     -3.7404      224.12 
0003           0           0  0.00025449    0.010461       51.29 
0004           0           0           0           0     0.03228 
] 
Orthogonal (an output) matrix -> Z(5,5) 
[row 
0000   -0.000147     0.65119    -0.70988     -0.2683   0.0053321 
0001    0.058037     0.72032      0.4688     0.50747   -0.021684 
0002    -0.19683     0.23844     0.51814     -0.7899     0.10951 
0003     0.67416    0.013955    0.085078    -0.20559    -0.70413 
0004      0.7095  -0.0059003    0.024408   -0.065352     0.70122 
] 
Balancing transform (an output) matrix -> B(5,5) 
[row 
0000         0.5           0           0           0           0 
0001           0           1           0           0           0 
0002           0           0           2           0           0 
0003           0           0           0           4           0 
0004           0           0           0           0           1 
] 
Achk = B*Z*S*Z'*inv(B) = matrix -> Achk(5,5) 
[row 
0000          -9          11         -21          63        -252 
0001          70         -69         141        -421        1684 
0002        -575         575       -1149        3451      -13801 
0003        3891       -3891        7782      -23345       93365 
0004        1024       -1024        2048       -6144       24572 
] 

 

Matrix Inverse Examples 
 
The inverse of a square matrix A is given by inv(A) = , and A*inv(A) = I.  An example follows. 
 

matcmplx A[][2] = {1 + 5j, 2 +6j, 3 + 7j,  4 + 8j }; 
matrix B[][5] = { 17, 23,  4, 10, 11, 
       24,  5,  6, 12, 18, 
        1,  7, 13, 19, 25, 
        8, 14, 20, 21,  2, 
       15, 16, 22,  3,  9 }; 
matrix Binv, Bchk; 
matcmplx Ainv, Achk; 
 
printf("Input = "); Print(B); 
Binv = inv(B) printf("inv(B) = "); Print(Binv); 
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Bchk = Binv*B; printf("B*inv(B) --> "); Print(Bchk); 
 
printf("Input = "); Print(A); 
Ainv = inv(A); printf("inv(A) = "); Print(Ainv); 
Achk = A*Ainv;printf("A*inv(A) --> "); Print(Achk); 
****************************************************************** 
Input = matrix -> B(5,5) 
[row 
0000          17          23           4          10          11 
0001          24           5           6          12          18 
0002           1           7          13          19          25 
0003           8          14          20          21           2 
0004          15          16          22           3           9 
] 
inv(B) = matrix -> Binv(5,5) 
[row 
0000  -0.0049359    0.043141   -0.030256   0.0046795   0.0027564 
0001    0.051154   -0.037308   0.0030769  -0.0065385       0.005 
0002   -0.035385  -0.0046154   0.0030769    0.010769    0.041538 
0003   0.0011538    0.012692   0.0030769    0.043462      -0.045 
0004   0.0033974   0.0014744     0.03641   -0.036987     0.01109 
] 
B*inv(B) --> matrix -> Bchk(5,5) 
[row 
0000           1           0           0           0           0 
0001           0           1           0           0           0 
0002           0           0           1           0           0 
0003           0           0           0           1           0 
0004           0           0           0           0           1 
] 
Input = matrix(cmplx) -> A(2,2) 
[row 
0000           1         +5j           2         +6j 
0001           3         +7j           4         +8j 
] 
inv(A) = matrix(cmplx) -> Ainv(2,2) 
[row 
0000          -2         +1j         1.5       -0.5j 
0001        1.75      -0.75j       -1.25      +0.25j 
] 
A*inv(A) --> matrix(cmplx) -> Achk(2,2) 
[row 
0000           1         +0j           0         +0j 
0001           0         +0j           1         +0j 
] 

 

A LU Factorization Example 
 
The LU factorization of an  m-by-n matrix is defined by A = L*U, where L is a lower triangular matrix 
with 1’s on the diagonal, and U is an upper triangular matrix with zero’s below the main diagonal.* The 
factorization works for m > n, m equals n, and m < n.  An example follows. 
 

matrix A[][3] = { 8, 2, 9, 4, 9, 4, 6, 7, 9 }; 
matrix X, L, U, Chk; 
 
Print(A); 
X = lu(A); 
U = triU(X); Print(U); 
L = triL(X); Print(L); 
Chk = L*U; Print(Chk); 

                                                 
* [1] pp 152-153 
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******************************************** 
matrix -> A(3,3) 
[row 
0000           8           2           9 
0001           4           9           4 
0002           6           7           9 
] 
matrix -> U(3,3) 
[row 
0000           8           2           9 
0001           0           8        -0.5 
0002           0           0      2.5938 
] 
matrix -> L(3,3) 
[row 
0000           1           0           0 
0001         0.5           1           0 
0002        0.75      0.6875           1 
] 
matrix -> Chk(3,3) 
[row 
0000           8           2           9 
0001           4           9           4 
0002           6           7           9 
] 

 

Solving Linear Equations 
 
We can solve linear equations for x. given  Mx = y or MY = B, for n independent equations in n 
unknowns, by calling the following functions in Slide-Rule.  Their prototypes are as follows. 
 

vector    linequ(matrix M,  vector y); 
veccmplx  linequ(matcmplx Mc,  veccmplx y); 
float     linequX(matrix M, matrix B, matrix Y); 
 
where matrix M must be a square matrix of full rank , 
   and y is a vector whose length must equal the rank of M 
 
linequ uses driver's dgesv and zgesv of LAPACK version 3.1.1. 
 
linequX users expert driver dgesvx of LAPACK version 3.1.1, and solves for the  
multiple columns of matrix B.  The solution is found in the columns of matrix Y (an output). 
The reciprocal condition Rcond number (a return value) is also computed on the input matrix 
M, after it has been equilibrated (if necessary); 

  
 An example follows. 
 

matrix A[][4] = { 19,   -1,     1,  -2, 
        1,  -20,    -1,   1, 
            2,    1,    21,  -1, 
             -1,   2,    -2,  22 }; 
vector y, Chk; 
float detA; 
vector b[] = { 1, 2, 3, 4 }; 
  
printf("Input  "); Print(A); 
printf("Input  "); Print(b); 
detA = det(A); printf("Matrix determinant = %f\n", detA); 
y = linequ(A, b); printf("Solution "); Print(y); 
mChk = A*y; printf("Check = A*y "); Print(mChk); 



  235 

******************************************************* 
Input  matrix -> A(4,4) 
[row 
0000          19          -1           1          -2 
0001           1         -20          -1           1 
0002           2           1          21          -1 
0003          -1           2          -2          22 
] 
Input  vector -> b(4) 
[index 
0000           1           2           3           4 
] 
Matrix determinant = -173189.000000 
Solution vector -> y(4) 
[index 
0000    0.061494   -0.094146     0.15134     0.20693 
] 
Check = A*y matrix -> mChk(4,1) 
[row 
0000           1 
0001           2 
0002           3 
0003           4 
] 

 

A Least Squares Fit 
 
We can solve least square fit problems of  the type.  Mx = y or MY = B,  by calling the following 
functions in Slide-Rule.  Their prototypes are as follows. 
 

vector  lsq(matrix M,  vector y); 
veccmplx lsq(matcmplx M,  veccmplx y); 
float lsqX(matrix M,  matrix B, matrix X); 
 
Routine lsq uses LAPACK driver routines dgels and zgels.  The matrix M 
must have full rank and the length of vector y must equal the rank of M.  The 
return value is the solution vector. 
 
Routine lsqX uses LAPACK driver routine dgelsd to solve a minimum norm-2 
least squares solution to a rank deficient matrix M.  Multiple solutions of the  
columns of matrix B are stored in the columns of the solution matrix X.  The row  
length of the matrix B must equal the row length of matrix M.  This function returns  
the rank of matrix M. 

 
 An example follows. 
 

matrix A[][4] = { 51, 25.5, 17.17, 13.01, 
     25.5, 17.17, 13.01, 10.51, 
    17.17, 13.01, 10.51, 8.84, 
    13.01, 10.51, 8.84, 7.65 }; 
vector b[] = { -98.96, -47.3, -23.3, -17.53 }; 
vector x, chk; 
int Rank; 
 
printf("Input "); Print(A); 
printf("Input "); Print(b); 
Rank = rank(A); printf("Rank of A = %d\n", Rank); 
x = lsq(A, b) printf("lsq(A, b) = "); Print(x); 
chk = matToV(A*x); printf("A*x = "); Print(chk); 
******************************************************* 
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Input matrix -> A(4,4) 
[row 
0000          51        25.5       17.17       13.01 
0001        25.5       17.17       13.01       10.51 
0002       17.17       13.01       10.51        8.84 
0003       13.01       10.51        8.84        7.65 
] 
Input vector -> b(4) 
[index 
0000      -98.96       -47.3       -23.3      -17.53 
] 
Rank of A = 4 
lsq(A, b) = vector -> x(4) 
[index 
0000      14.042     -173.09      395.75     -245.68 
] 
A*x = vector -> chk(4) 
[index 
0000      -98.96       -47.3       -23.3      -17.53 
] 

 

A Matrix Pseudoinverse Example 
 
The equation for the SVD decomposition is given by A = U*S*VT, and the Moore-Penrose pseudo-inverse 
is given by A = U*S+VT.  The matrix S+ is generated by taking the transpose of  S, then replacing non-zero 
entries by their reciprocals.  For diagonal entries below the rank, the entries are set to zero. The pseudo-
inverse of A has properties of the inv function, and is most useful in rank deficient systems of linear 
equations.  For Ay = b, where matrix  A  is rank deficient, we can get a solution by writing y = pinv(A)*b. 
Note!  To verify that y is an exact solution, check with the following statement (variable b declared as a 
vector),  b = (vector)(A*y).  If b is equal to the original b, then you have an exact solution, otherwise 
variable y returned from pinv(A)*b is a least squares solution.  Note that the norm of this solution is less 
than the norm of other solutions, such as that computed by the QR method.  In the above statement, 
variable b can either be a vector or a single column of a matrix. One can also use function lsqX to solve 
for rank deficient systems.  Refer to this function under the help menu under lsq - Least squares fit. An 
example follows. 
 

#include "matrices.h" 
matrix A, y, Chk; 
vector b; 
 
A = pascal(8,0); reduce(A, 7, -1); reduce(A, 6, -1); Print(A); 
b = zerosV(6); b += 8; Print(b); 
printf("Rank of A = %d\n", rank(A)); 
y = pinv(A)*b; printf("y = pinv(A)*b; "); Print(y); 
Chk = A*y; printf("Chk = A*y = "); Print(Chk); 
**************************************************************** 
matrix -> A(6,8) 
[row 
0000      1      1      1      1      1      1      1      1 
0001      1      2      3      4      5      6      7      8 
0002      1      3      6     10     15     21     28     36 
0003      1      4     10     20     35     56     84    120 
0004      1      5     15     35     70    126    210    330 
0005      1      6     21     56    126    252    462    792 
] 
vector -> b(6) 
[index 
0000      8      8      8      8      8      8 
] 
Rank of A = 6 
y = pinv(A)*b; matrix -> y(8,1) 
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[row 
0000      7.9674 
0001     0.16783 
0002    -0.32168 
0003      0.2331 
0004     0.06993 
0005    -0.22378 
0006      0.1352 
0007   -0.027972 
] 
Chk = A*y = matrix -> Chk(6,1) 
[row 
0000           8 
0001           8 
0002           8 
0003           8 
0004           8 
0005           8 

] 

 

A Matrix Norm-2 Least Squares Example 
 

The following example is a least squares fit for an m-by-n matrix Mx = B, where the number of rows of 
M is less then the number of columns, and B is a matrix. 
 

#include "magic.txt" 
matrix A, Y, B, Chk; 
float Rank; 
 
printf("A Matrix lsqX Example\n\n"); 
A = magic(12); 
reduce(A, 11, -1); reduce(A, 10, -1); Print(A); 
B = { }; B = { A[:0]; A[:3]; A[:6] }; B = B'; Print(B); 
printf("Rank of A = %d\n", rank(A)); 
Rank = lsqX(A, B, Y); Print(Y); 
Chk = A*Y; printf("Chk = A*Y "); Print(Chk); 

******************************************************************************* 
matrix -> A(10,12) 
[row 
0000   144     2     3   141   140     6     7   137   136    10    11   133 
0001    13   131   130    16    17   127   126    20    21   123   122    24 
0002    25   119   118    28    29   115   114    32    33   111   110    36 
0003   108    38    39   105   104    42    43   101   100    46    47    97 
0004    96    50    51    93    92    54    55    89    88    58    59    85 
0005    61    83    82    64    65    79    78    68    69    75    74    72 
0006    73    71    70    76    77    67    66    80    81    63    62    84 
0007    60    86    87    57    56    90    91    53    52    94    95    49 
0008    48    98    99    45    44   102   103    41    40   106   107    37 
0009   109    35    34   112   113    31    30   116   117    27    26   120 
] 
matrix -> B(10,3) 
[row 
0000         144         141           7 
0001          13          16         126 
0002          25          28         114 
0003         108         105          43 
0004          96          93          55 
0005          61          64          78 
0006          73          76          66 
0007          60          57          91 
0008          48          45         103 
0009         109         112          30 
] 
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Rank of A = 3 
matrix -> Y(12,3) 
[row 
0000     0.37821     0.26282    0.019231 
0001    -0.17308   -0.078671     0.15093 
0002    -0.13462   -0.061189     0.15443 
0003     0.26282     0.21037   0.0087413 
0004     0.22436     0.19289   0.0052448 
0005   -0.019231  -0.0087413     0.16492 
0006    0.019231   0.0087413     0.16841 
0007     0.10897     0.14044  -0.0052448 
0008    0.070513     0.12296  -0.0087413 
0009     0.13462    0.061189      0.1789 
0010     0.17308    0.078671      0.1824 
0011   -0.044872    0.070513   -0.019231 
] 
Chk = A*Y matrix -> Chk(10,3) 
[row 
0000         144         141           7 
0001          13          16         126 
0002          25          28         114 
0003         108         105          43 
0004          96          93          55 
0005          61          64          78 
0006          73          76          66 
0007          60          57          91 
0008          48          45         103 
0009         109         112          30 
] 

 

An Over-determined Set of Equations 
 
An example of Solving a System of Over determined Equations. We first solve using the QR 
decomposition function qr, then we solve by calling function linequOD.  For the qr solution we have, 
 

A*P = Q*R      definition of qr decompostion 
A*P*P' = A = Q*R*P' 
A*x = Q*R*P'*x = b 
Q'*A*x = Q'*Q*R*P'*x = R*P'*x = Q'*b = y 
 
Therefore, 
 
x = linequ(R*P', y); 

 
For the linequOD  solution we have,  x = linequOD(A, b); An example follows. 
 

matrix A[][3] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 }; 
vector b[] = { 1, 3, 5, 7 }; 
vector x, y, z; 
matrix Q, R, P, yM, zChk; 
 
printf("Input "); Print(A); 
printf("input "); Print(b); 
P = qr(A, Q, R); // do qr decomposition 
printf("P = qr(A, Q, R); "); Print(P); 
printf("Orthogonal Matrix output "); Print(Q); 
printf("Upper triangular matrix output "); Print(R);  
yM = Q'*b; printf("yM = Q'*b; "); Print(yM); 
reduce(yM, 3, -1); Print(yM); 
reduce(R, 3, -1); printf("reduce(R, 3, -1); "); Print(R); 
y = (vector)yM; 



  239 

x = linequ(R*P', y); printf("x = linequ(R*P', y); "); Print(x); 
zChk = A*x; printf("zChk = A*x; "); Print(zChk); 
z = linequOD(A, b); printf("z = linequOD(A, b); "); Print(z); 
***************************************************** 
Input matrix -> A(4,3) 
[row 
0000           1           2           3 
0001           4           5           6 
0002           7           8           9 
0003          10          11          12 
] 
input vector -> b(4) 
[index 
0000           1           3           5           7 
] 
P = qr(A, Q, R); matrix -> P(3,3) 
[row 
0000           0           1           0 
0001           0           0           1 
0002           1           0           0 
] 
Orthogonal Matrix output matrix -> Q(4,4) 
[row 
0000    -0.18257     -0.8165           0           0 
0001    -0.36515    -0.40825           0           0 
0002    -0.54772           0           0           0 
0003     -0.7303     0.40825           0           0 
] 
Upper triangular matrix output matrix -> R(4,3) 
[row 
0000     -16.432      -12.78     -14.606 
0001           0       1.633      0.8165 
0002           0           0           0 
0003           0           0           0 
] 
yM = Q'*b; matrix -> yM(4,1) 
[row 
0000     -9.1287 
0001      0.8165 
0002           0 
0003           0 
] 
reduce(R, 3, -1); matrix -> R(3,3) 
[row 
0000     -16.432      -12.78     -14.606 
0001           0       1.633      0.8165 
0002           0           0           0 
] 
x = linequ(R*P', y); vector -> x(3) 
[index 
0000         0.5           0     0.16667 
] 
zChk = A*x; matrix -> zChk(4,1) 
[row 
0000           1 
0001           3 
0002           5 
0003           7 
] 
z = linequOD(A, b); vector -> z(3) 
[index 
0000         0.5           0     0.16667 
] 
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Eigenvalues/Eigenvectors Examples 
 
We can solve eigenvalue and eigenvector problems calling the following functions in Slide-Rule.  
Their prototypes are as follows. 
 

veccmplx  eig(matcmplx MatV,  matrix Mat1); 
veccmplx  eig(matcmplx MatV, matcmplx Mat2); 
veccmplx  eigX(matcmplx MatV,  matrix Mat1); 
veccmplx  eigX(matcmplx MatV, matcmplx Mat2); 
vector    eigS(matrix MatV, matrix Mat); 
veccmplx  eigS(matcmplx MatV, matcmplx Mat2); 
veccmplx  eigG(matcmplx MatV, matrix A, matrix B); 
 
For functions eig and eigX , the non-symmetric eigenvalue problem. (NEP). 
For function eigS , the symmetric eigenvalue problem. (SEP). 
   

MatV = complex matrix of computed eigenvectors (an output).   
 Mat1 = real square matrix input. 
 Mat2 = complex square matrix input. 
 Returns the complex vector of computed eigenvalues. 
 
Returns the real or complex vector of computed eigenvalues. 
Note!!  The eigenvectors are stored as complex column vectors. 

  
For the first example, we compute the eigenvalues/eigenvectors of a 7 x 7 matrix.  Next the 
eigenvalues/eigenvectors of a 21 x 21 matrix, where the matrix is the classical Wilkinson test matrix, 
whereby two of the eigenvalues are accurate to 15 decimal digits 
 

For the 7 x 7 Wilkinson matrix using the (NEP) driver eig 
 
Eigenvalues =  
 
3.732050807568876 
3.761557181831890 
2.363328237932682 
2.000000000000000 
0.999999999999999 
0.267949192431123 
-1.124885419764575 
Eigenvectors (on column basis) matrix -> wVectorR(7,7) 
[row 
0000  -0.55768  0.54025  -0.3799  0.40825  -0.25  0.14943  0.03614 
0001  -0.40825  0.41143  0.24187 -0.40825    0.5 -0.40825 -0.14907 
0002  -0.14943  0.18451  0.46778 -0.40825  -0.25  0.55768   0.4297 
0003         0 0.098103  0.39587        0   -0.5        0 -0.76398 
0004   0.14943  0.18451  0.46778  0.40825  -0.25 -0.55768   0.4297 
0005   0.40825  0.41143  0.24187  0.40825    0.5  0.40825 -0.14907 
0006   0.55768  0.54025  -0.3799 -0.40825  -0.25 -0.14943  0.03614 
] 
For the 21 x 21 Wilkinson matrix using the (NEP) driver eig 
 
Eigenvalues =  
 
10.746194182903407 
10.746194182903331 
9.210678647304920 
9.210678647361334 
8.038941115814280 
8.038941122829032 
7.003951798616381 
7.003952209528682 
6.000217522257097 
6.000234031584167 
5.000244425001914 
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4.999782477742904 
4.004354023440857 
3.996048201383625 
3.043099292578823 
2.961058884185725 
2.130209219362503 
1.789321352695079 
0.947534367529293 
0.253805817096678 
-1.125441522119985 

 
For the 21 x 21 Wilkinson matrix using (SEP) symmetric driver (eigS) 

 
Eigenvalues = 

 
 10.746194182903395 
 10.746194182903324 
 9.210678647361334 
 9.210678647304919 
 8.038941122829021 
 8.038941115814273 
 7.003952209528676 
 7.003951798616376 
 6.000234031584168 
 6.000217522257099 
 5.000244425001912 
 4.999782477742901 
 4.004354023440857 
 3.996048201383624 
 3.043099292578823 
 2.961058884185726 
 2.130209219362503 
 1.789321352695080 
 0.947534367529294 
 0.253805817096678 
 -1.125441522119987 

 

A Reduced Row Echelon Example 
 
This function returns a reduced row echelon form of a matrix using Gauss Jordan elimination. It uses a 
default tolerance of 2.2e-14 for negligible column elements. The original input matrix is left intact.  The 
prototype of this function is as follows. 
 

matrix  rref(matrix  mat); 
 

An example follows. 
 

matrix A[][3] = { 1, 1, -2, 3, 2, 4, 4, 3, 3 }; 
matrix B[][1] = { 1, -4, -4 }; 
vector y; 
matrix Rr, Aug, Chk; 
 
Print(A); Print(B); 
Aug = { A, B }; printf("Augmentated matrix = "); Print(Aug); 
Rr = rref(Aug); printf("Reduced Row Echelon form = "); Print(Rr); 
y = Rr[:3]; printf("Solution = "); Print(y); 
Chk = A*y; printf("A*y = "); Print(Chk); 
******************************************************** 
matrix -> A(3,3) 
[row 
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0000           1           1          -2 
0001           3           2           4 
0002           4           3           3 
] 
matrix -> B(3,1) 
[row 
0000           1 
0001          -4 
0002          -4 
] 
Augmentated matrix = matrix -> Aug(3,4) 
[row 
0000           1           1          -2           1 
0001           3           2           4          -4 
0002           4           3           3          -4 
] 
Reduced Row Echelon form = matrix -> Rr(3,4) 
[row 
0000           1           0           0           2 
0001           0           1           0          -3 
0002           0           0           1          -1 
] 
Solution = vector -> y(3) 
[index 
0000           2          -3          -1 
] 
A*y = matrix -> Chk(3,1) 
[row 
0000           1 
0001          -4 
0002          -4 
] 

 

Matrix/Vector Norms 
 
Various norms of matrices and vectors can be computed in Slide-Rule.  The function prototypes are listed 
as follows. 

float  normM(matrix A, char type); 
float  normM(matcmplx A, char type); 
float  normV(vector B, char type); 
float  normV(veccmplx B, char type); 
float  norm(matrix A); 
float  norm(matcmplx A); 
 
 for a matrix and function normM 
  A   =    matrix 
  '1',  largest column sum max (1-norm) 
  'I'  largest row sum (infinity norm) 
  'F' Frobenius-norm 
  'M' largest absolute value 
 for a vector and function normV 
  B   =     vector 
  '1' vector sum , sum of absolute values(1-norm) 
  '2' Euclidean sum , sqrt(sum of values^2)) (2-norm)    
  'I' Largest absolute value 
  for function norm, the return value is the norm-2 value. 

 
The norm-1 of a vector is given by 
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   nxxx ++= K11
 

The norm-2 of a vector is given by 

   ( ) 2/122
12 nxxx ++= K  

The Infinity norm of a vector is given by 
   nixx i ≤≤=

∞
1  ,    max  

 
The norm-1 of a matrix is given by 

   nj1  ,max
1

1
≤≤= ∑

=

m

i
ijaA  

The Infinity norm of a matrix is given by 

   mi1  ,max
1

≤≤= ∑
=

∞

n

j
ijaA  

The Frobenius norm of a matrix is given by 

   ∑∑
= =

=
m

i

n

j
ijF

aA
1 1

2
 

The norm-2 of a matrix is given by 
 
   

2
2 A   where, == μμ zAzAT  

 
In particular, the norm-2 of A is the square root of the largest eigenvalue of ATA. It can also 
be shown that the norm-2 of A is the largest singular value of the vector returned value from 
a SVD decomposition, and  This is the method used for function norm.  An example 
follows. 

 
#include "matrices.h" 
matrix M1 [][4] = { 1, 2, 3, 4, 5, 6, 7, 8, 
      9, 10, 11, 12, 13, 14, 15, 16 }; 
vector V1[] = { 1, -2, 3, -4 }; 
float    ftemp, norm2Val; 
vector    eigns; 
matrix    Mx, U, V; 
 
Print(M1); 
ftemp = normM(M1, '1'); printf("norm-1 = %g\n", ftemp); 
ftemp = normM(M1, 'I'); printf("Infinity norm = %g\n", ftemp); 
ftemp = normM(M1, 'F'); printf("frobenius norm = %g\n", ftemp); 
ftemp = normM(M1, 'M'); printf("max abs norm = %g\n", ftemp); 
Print(V1); 
ftemp = normV(V1, '1');  printf("norm-1 = %g\n", ftemp); 
ftemp = normV(V1, '2');  printf("norm-2 = %g\n", ftemp); 
ftemp = normV(V1, 'M');  printf("max abs norm = %g\n", ftemp); 
Mx = wilkinson(7); Print(Mx); 
eigns = real(eig(eignVecs, Mx*Mx)); Print(eigns); 
norm2Val = sqrt(max(eigns));  
printf("norm-2 = sqrt(max(eigns)) "); Print(norm2Val); 
norm2Val = max(max(svd(Mx,U,V)));  
printf("norm-2 = max(max(svd(Mx,U,V))) "); Print(norm2Val); 
norm2Val = norm(Mx); printf("norm-2 = norm(Mx) "); Print(norm2Val); 
**************************************************************** 
matrix -> M1(4,4) 
[row 
0000           1           2           3           4 
0001           5           6           7           8 
0002           9          10          11          12 
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0003          13          14          15          16 
] 
norm-1 = 40 
Infinity norm = 58 
frobenius norm = 38.6782 
max abs norm = 16 
 
vector -> V1(4) 
[index 
0000           1          -2           3          -4 
] 
norm-1 = 10 
norm-2 = 5.47723 
max abs norm = 4 
 
matrix -> Mx(7,7) 
[row 
0000      3      1      0      0      0      0      0 
0001      1      2      1      0      0      0      0 
0002      0      1      1      1      0      0      0 
0003      0      0      1      0      1      0      0 
0004      0      0      0      1      1      1      0 
0005      0      0      0      0      1      2      1 
0006      0      0      0      0      0      1      3 
] 
vector -> eigns(7) 
[index 
0000      1.2654      1    0.071797     4    5.5853    13.928   14.149 
] 
norm-2 = sqrt(max(eigns))      norm2Val = 3.76155718183189 
norm-2 = max(max(svd(Mx,U,V))) norm2Val = 3.76155718183189 
norm-2 = norm(Mx)              norm2Val = 3.76155718183189 

 
 

Toeplitz Matrices 
 
A matrix whose entries are constant along each diagonal arise in many applications, and are called 
Toeplitz matrices.  Toeplitz matrices are divided into two classes, namely symmetric and positive definite 
(or Hermitian Toeplitz), and un-symmetric.  Slide-Rule has functions to compute a Toeplitz matrix from a 
vector(s). Their function prototypes are listed as follows. 
 

matrix  toeplitz(vector p); 
matrix  toeplitz2(vector p, vector r); 
matcmplx  toeplitz(veccmplx p); 
matcmplx  toeplitz2(veccmplx p, veccmplx r); 
 
 where, 
  p = vector input 
  r = vector input; 
 returns a Toeplitz matrix 

 
Function toeplitz(p) returns the symmetric or Hermitian Toeplitz matrix formed from vector p, where p 
defines the first column of the matrix  Function toeplitz2(p, r) returns a nonsymmetric Toeplitz matrix 
having p has its first column and r as its first row.  If the first elements of p and r differ, then p wins the 
diagonal conflict. An example follows. 
 

vector b[] = { 1, 2, 3, 4, 5 }; 
vector c[] = { 6, 7, 8, 9, 10 }; 
vector a[] = { 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; 
matrix B; 
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printf("Input "); Print(b); 
B = toeplitz(b); printf("B = toeplitz(b)  "); Print(B); 
printf("Input "); Print(c); 
B = toeplitz2(b, c); printf("B = toeplitz2(b, c)  "); Print(B); 
******************************************************************* 
Input vector -> b(5) 
[index 
0000           1           2           3           4           5 
] 
B = toeplitz(b)  matrix -> B(5,5) 
[row 
0000           1           2           3           4           5 
0001           2           1           2           3           4 
0002           3           2           1           2           3 
0003           4           3           2           1           2 
0004           5           4           3           2           1 
] 
Input vector -> c(5) 
[index 
0000           6           7           8           9          10 
] 
B = toeplitz2(b, c)  matrix -> B(5,5) 
[row 
0000           1           7           8           9          10 
0001           2           1           7           8           9 
0002           3           2           1           7           8 
0003           4           3           2           1           7 
0004           5           4           3           2           1 
] 

  

 The Square Root of a Matrix 
 
The square root of a symmetric positive semi-definite matrix is defined as A = GGT.* If we take the 
Cholesky factorization of A, then perform a singular value decomposition of G, we have 
 
 A = GGT = (USVT) (USVT)T  = US 2VTV UT  = US 2UT =   (USUT) (USUT) = X 2 
 
or we can call function sqrtM in Slide-Rule.  An example follows. 
 

#include "pascal.txt" 
matrix A, X, U, S, V, G, Chk; 
  
A = pascal(5, 0); printf("Input Matrix = "); Print(A); 
printf("Rank of A = %d\n", rank(A)); 
printf("det(A) = %f\n", det(A)); 
G = chol(A); 
S = svd(G,U,V); 
X = U*S*U'; printf("Square root of input matrix = "); Print(X); 
Chk = X*X; printf("Check of sqrt(A) = X*X; "); Print(Chk); 
X = sqrtM(A); printf("X = sqrtM(A) = "); Print(X); 
******************************************************************* 
Input Matrix = matrix -> A(5,5) 
[row 
0000           1           1           1           1           1 
0001           1           2           3           4           5 
0002           1           3           6          10          15 
0003           1           4          10          20          35 

                                                 
* [1] p 149 
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0004           1           5          15          35          70 
] 
Rank of A = 5 
det(A) = 1.000000 
Square root of input matrix = matrix -> X(5,5) 
[row 
0000     0.86995     0.43498     0.20827    0.094911    0.039986 
0001     0.43498     0.90818     0.79483     0.52397     0.28232 
0002     0.20827     0.79483       1.388      1.4704      1.1119 
0003    0.094911     0.52397      1.4704      2.6824      3.2185 
0004    0.039986     0.28232      1.1119      3.2185       7.637 
] 
Check of sqrt(A) = X*X; matrix -> Chk(5,5) 
[row 
0000           1           1           1           1           1 
0001           1           2           3           4           5 
0002           1           3           6          10          15 
0003           1           4          10          20          35 
0004           1           5          15          35          70 
] 
X = sqrtM(A) = matrix -> X(5,5) 
[row 
0000     0.86995     0.43498     0.20827    0.094911    0.039986 
0001     0.43498     0.90818     0.79483     0.52397     0.28232 
0002     0.20827     0.79483       1.388      1.4704      1.1119 
0003    0.094911     0.52397      1.4704      2.6824      3.2185 
0004    0.039986     0.28232      1.1119      3.2185       7.637 
] 

 

A Generalized Eigenvalue Problem 
 

The Generalized Eigenvalue Problem is given by BxAx λ= .  Slide-Rule has a function to solve this 
problem, and its prototype is as follows, 
 

veccmplx  eigG(matcmplx MatV, matrix A, matrix B); 
 
where,  
MatV = complex matrix of computed eigenvectors (an output).   
A = real square matrix input. 
B = real square matrix input. 
Returns the complex vector of computed eigenvalues. 
Note!!  The eigenvectors are stored as complex column vectors. 

 
  An example follows. 
 

matrix A[][4] = { 1, 1, 0, 0, 
       1, 0, 0, 0, 
      -1, 0, 1, 0, 
       0,-1, 0, 1 }; 
matrix B[][4] = { 1, 0, 1, 0, 
       0, 1, 0, 0, 
       0, 0, 1, 1, 
       0, 0, 1, 0 }; 
matcmplx eigVects; 
matrix eigVectR, chkL, chkR;  
vector eigValR; 
 
Print(A); Print(B); 
eigValR = real(eigG(eigVects, A, B)); Print(eigValR); 
eigVectR = real(eigVects); Print(eigVectR);  
chkL = A*eigVectR[:0]; printf("A*eigVect[:0] = "); Print(chkL); 
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chkR = eigValR[0]*B*eigVectR[:0];  
printf("eigValR[0]*B*eigVect[:0] = ");Print(chkR); 
} 
******************************************************** 
matrix -> A(4,4) 
[row 
0000           1           1           0           0 
0001           1           0           0           0 
0002          -1           0           1           0 
0003           0          -1           0           1 
] 
matrix -> B(4,4) 
[row 
0000           1           0           1           0 
0001           0           1           0           0 
0002           0           0           1           1 
0003           0           0           1           0 
] 
vector -> eigValR(4) 
[index 
0000      2.1889     -2.1889     0.45685    -0.45685 
] 
matrix -> eigVectR(4,4) 
[row 
0000           1     0.43952     0.16722     0.34235 
0001     0.45685     -0.2008     0.36603    -0.74938 
0002    -0.33444    -0.54858           1     0.54858 
0003     -0.2752           1     0.82288          -1 
] 
A*eigVect[:0] = matrix -> chkL(4,1) 
[row 
0000      1.4569 
0001           1 
0002     -1.3344 
0003    -0.73205 
] 
eigValR[0]*B*eigVect[:0] = matrix -> chkR(4,1) 
[row 
0000      1.4569 
0001           1 
0002     -1.3344 
0003    -0.73205 
] 

 

Performance 
 

For solving 1000 linear equations in 1000 unknowns with an Intel I5-430M CPU core on a PC, the run 
time was approximately 2.6 seconds.  For 1000 linear equations with 5 solution vectors, the run time was 
~3.5 seconds.  For 8000 equations in 8000 unknowns, the run time was ~20 minutes. 
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 Chapter  15 - Special Mathematical Functions 

 

Introduction 
 

In the course of engineering and scientific analysis, special mathematical functions pop up such as 
Bessel functions; the error functions erf and erfc; the Gamma function; Chebyshev polynomials; 
Legendre Orthogonal polynomials, etc.  Slide-Rule has a collection of these special functions, and 
documentation of these functions can be found under the  Functions Reference (F7) under Special 
Mathematical Functions.  This chapter will present plots of some of these functions. 
 

Bessel Functions of the first kind Jn 
 

The Bessel function Jn(x) is defined as: 
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Bessel Functions Yn, In, and Kn 
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Incomplete Elliptic Integrals of the 1st and 2nd kind 
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The error functions erf(x) and erfc(x) 
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The Gamma Function 
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The Beta Function B(z,w) 
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The Jacobian Elliptic Function 
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The Incomplete Gamma Function P(a,x) 
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 The Exponential Integral 
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Cbebyshev Polynomials 
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Jacobi Polynomials 
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Legendre Polynomials 
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 Chapter  16 - Differential Equations and Numerical Integration 

 

Introduction 
 
Differential equations are commonly used in science and engineering to create a mathematical 
model of a real world system.  Often, however, there is no known analytical solution, and 
numerical solutions are required.  The results of a numerical solution normally result in a plot 
and a hardcopy printed output of certain parameters.  In this chapter we will limit the discussion 
to the solution of systems of ordinary differential equations, commonly called ODE’s, as well as 
Numerical Integration techniques, and finally Numerical Optimization examples for function’s 
of one or more variables.  Note that the shell script code listed in this chapter is without the 
annotation code, as one can generate this code with mouse and keyboard entries once a given 
plot is displayed, and have the code automatically inserted into the shell script file (as described 
in Chapter 3). 
 
Higher-order differential equations involve the higher derivatives xk(t),  xk-1(t) …x”(t), x’(t).  
They arise in mathematical models for problems in science and engineering.  As an example, 
given the equation 
 

 )()()()( ''' tgbtkxtcxtmx =+++  
 
We can re-write this ODE as a system of equations in the form. 
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Note that in order to solve this system of equations, we need to know the starting value (K1) of x at t0, as 
well as the first (K2) and second (K3) derivatives at t0.  One of the most powerful methods for solving this 
system of differential equations is the fourth order Runge-Kutta equations given by, 
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In Slide-Rule, we have an internal function to solve this system of equations, namely sysODE.  Its 
prototype is given as follows. 

 
matrix  sysODE(void (*derivs)(float, float *, float *),  

    float a, float b, vector Ys, int N, int Ndiv); 
   
  where,  
   (*derivs)(float, float *, float *)= user supplied routine for  
   computing the derivatives.  The first input is the x value,  
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   the next argument is the input vector for the variables y,  
   and the last argument are the  computed derivatives dydx.   
   a = starting point (a < b) 
   b = ending point  (b > a) 
   Ys = vector of starting values for each argument at a.  
   N = number of data points +1.  The increment between data 
   points is (b-a)/N. 
   Ndiv = integration factor.  For non-stiff problems set to 1.  For 
   stiff problems increase up to 10 or more.  This causes the  
   interval to be divided up by a factor of Ndiv, with output at  
   intervals of (b-a)/N. 
  Errors: 
   More than 10 arguments 
   Arguments times data points exceeds memory 
   Arithmetic error! signal = 8.   If this occurs, then increase the  
   integration factor, i.e., Ndiv. 
  Returns: 
   Matrix of results.  First row are abscissa values.  Each succeeding row is 
   solution vector for each argument.  Refer to example file sysode.txt in  
   sub-directory diffeq. 

 
In order to use this function, the user must supply a subroutine (dervis) in their shell script to 
calculate the derivatives, as integration takes place through the 4th order Runge-Kutta internal 
subroutine.  As an example, for the differential equation given by, 

 01243 ''')3( =+++ yyyy  
The dervis subroutine  would be as follows, 

 
void  derivs(float t, float *y, float *dydt) { 
 dydt[2] = -3*y[2] -4*y[1] -12*y[0]; // calculate 3rd derivative 
 dydt[1] = y[2]; // calculate 2nd derivative 
 dydt[0] = y[1]; // calculate 1st derivative 
// Note that y[0] = y, y[1] = y’, y[2] = y” 
} 

Note that the variable t (an input) is the abscissa value or the independent variable, which starts 
out as t0  = a, and increases to the value of b by the step size, which is equal to (b-a)/N.  The 
variable array dydt (an output), are the calculated derivative which are output to the internal 
function ( the 4th order Runge-Kutta subroutine) to calculate the y values, which come back into 
this function as the second argument in subroutine dervis.  From the above, we note that the 
second derivative equals y[2] since y[2] is the integration of dydt[2]  from the previous iteration 
(internally), and the first derivative equals y[1] since it’s the integration of dydt[1].  Finally, y[0] 
is a solution value of this particular ODE at a given value of t between a and b. 
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A Simple Electrical Circuit 
 
Suppose were given the equation of an electric circuit as, 

   
0 = (0)I 0, = I(0) with )200cos(40t = E(wt) and, 

.006=C.1, =L200,=R ,)(1'

′

′=++′′ wtEAwI
C

RIIL
 

 
and we want to solve for the current I over a range of  2 seconds. Re-writing the equation, we have, 
 

   ′′ = − − ′ −I t I I80000 40 2000 1666 6667sin( ) .  
 
The user supplied function (dervis) then becomes, 
 

void derivs(float x, float *y, float *dydt) { 
     dydt[1] = -80000.*sin(40*x)-1666.6667*y[1]-2000.*y[0]; 
     dydt[0] = y[1]; 
} 
 

Putting it all together, the plots for solving this system are shown below. 
 

1.00

.75

.50

.25

.00

-0.25

-0.50

-0.75

-1.00

-1.25

-1.50

-1.75

-2.00
2.01.81.61.41.21.0.8.6.4.2.0

Time in Seconds

Classical Solution

C
U
R
R
E
N
T

I(t) = -1.0004e-0 .8 3 3 7t  + 0.0004e-19 9 9 .16 6 3 t  -0.0008sin(40t) + cos(40t)

 



               260 

1.00

.75

.50

.25

.00

-0.25

-0.50

-0.75

-1.00

-1.25

-1.50

-1.75

-2.00
2.01.81.61.41.21.0.8.6.4.2.0

Time in Seconds

sysODE Solution

C
U
R
R
E
N
T

LdI2 /dt2  + RdI/dt + I/C = E '(t)
R = 200 ohms, C = 0.006mF, L = 0.1 nH
E(t) = 200sin(40t)
I(0) = 0, I'(0) = 0

 
 

The shell script code for this example is: 
 
void  derivs(float x, float *y, float *dydx) { 
 dydx[1] = -80000.*sin(40*x) -1666.6667*y[0] -2000*y[1]; 
 dydx[0] = y[1]; 
} 
vector      I, t; 
vector  ystart[] = { 0, 0, 0 }; 
vector      T, Ic; 
matrix      M; 
int  i, N = 2001; 
 
// do classical solution first 
t = vecLin(0, 2, N); // Print(t); 
I = -1.004*exp(-0.8337*t) + 0.0004*exp(-1999.1663*t) -0.0008*sin(40*t) + cos(40*t); 
openPlot("Classical Solution"); 
plotxy(t, I, Sizeof(t)); 
pCRT(); 
// do numerical solution next 
M = sysODE(derivs, 0., 2., ystart, 2000, 1);  
openPlot("sysODE Solution"); 
plotxy(M[0], M[1], Sizeof(M[:0])); 
pCRT(); 
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A Numerical Integration Example 
 

Numerical integration is a tool used by engineers and scientists to obtain approximate answers 
for definite integrals that cannot be solved analytically.  Two solution methods are Simpson’s 
Rule, and Romberg Integration with Richardson’s improvement.  Simpson’s equations to 
approximate a definite integral are given by, 
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In Slide-Rule, we have two internal functions to approximate a definite integral, namely simpI  
and rombI.  Their  prototypes are given as follows. 

 
float simpI(float (*func)(float x), float a, float b); 
float rombI(float (*func)(float x), float a, float b); 
 
where, 

(*func)(float, float x) is a user supplied routine for computing the  
value of the function at x (note that this function returns a float type). 
a = starting value for the integration process. 
b = ending value for the integration process. 

 
In order to use this function, the user must supply a subroutine (calcPts) in their shell script to 
calculate the starting (a) and ending (b) values of the desired function to integrate. As an 
example, for the function )3cos(2 te t , we have 
 

float  calcPts(float t)  
{ 
 return(exp(2*t)*cos(3*t)); 
} 

 
For the function as shown above, to compute the value from 0 to pi/2, we have the example as 
shown below. 
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The shell script code for this example is: 
 

float  calcPts(float t)  
{ 
 return(exp(2.*t)*cos(3.*t)); 
} 
float  ans,xmax, ftemp1, ftemp2, del, x, array[201]; 
int i; 
 
xmax = pi/2.; del = xmax/200.; 
for(i = 0, x = 0; i <= 200; i++) { // calculate plotting points 
 array[i] = calcPts(x); x += del; } 
openPlot("Numerical Integration Example"); 
ploty(0., del, array, 201); 
pCRT(); 
ans = rombI(calcPts, 0, xmax); 
printf("ans from rombI = %.12f\n", ans); 
ans = simpI(calcPts, 0, xmax); 
printf("ans from simpI = %.12f\n", ans); 
ftemp1 = exp(pi)*(2.*cos(3.*pi/2.) + 3.*sin(3.*pi/2.))/13.; 
ftemp2 = exp(0.)*(2.*cos(0.) + 3.*sin(0.))/13.; 
ans = ftemp1 - ftemp2; 
printf("ans from formula = %.12f\n", ans); 

 

The First Painleve’ Transcent 
 
For solving a family of a differential equation, a good example is the First Painleve’ Transscent 
given by, 
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 2.0  x,7.0x3.3- and 12,x0    / ''222 =+≤≤≤≤−= xyxdyd   
 
For this ODE as shown above, we have an example as shown below. 
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The shell script code for this example is: 
 

void  derivs(float x, float *p, float *dydx)  
{ 
 dydx[1] = p[0]*p[0] - x; dydx[0] = p[1]; 
} 
matrix   M; 
int NDIVS = 1000; 
vector   p[] = { 0, -3.3 }; // p[0] = x0, p[1] = x0’ 
float dydx; 
 
openPlot("The First Painleve' Transcendant"); 
for(dydx = -3.3; dydx <= .7; dydx += .2) { 
 p[0] = 0; p[1] = dydx; 
 M = sysODE(derivs, 0, 12, p, NDIVS, 1); // compute current case 
 plotxy(M[0], M[1], NDIVS+1); // row 0 is x values, row 1 is y values 
} 
pCRT(); 
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 A Spring Shock Absorber 
 
Another simple example is a Sprint Shock Absorber system, where the differential equation is 
given by: 
 
  dy2/dt2 = 5e-t/8cos(3t) -0.5dy/dt -8y 
 
The shell script code for this example and a plot of the solution follows. 
 

void  derivs(float t, float *p, float *dydt)  
{ 
  dydt[1] = 5*exp(-t/8)*cos(3*t) -8*p[0] -.5*p[1]; 
  dydt[0] = p[1]; 
} 
matrix M; 
int    NDIVS = 1000; 
vector p[] = { .25, 1 }; 
float  dydx; 
M = sysODE(derivs, 0, 40, p, NDIVS, 1); // compute current case 
openPlot("A Spring Shock-Absorber"); 
plotxy(M[0], M[1], NDIVS+1); 
Title("A Spring Shock-Absorber"); 
xLabel("Time"); 
yLabel("Position",1); 
axisS(0,1,0,0,0); 
colorB(223,223,223); 
grid(); 
pCRT(); 
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Van der Pol’s Equation 
 
The Van der Pol’s differential equation is a very stiff ODE, and it takes special algorithms or 
techniques to solve this equation.  The equation is given by, 

 0/)1(/ 222 =+−−= ydxdyydxyd μ  
We can use the sysODE function to solve this equation by setting the last parameter in the 
calling sequence to a number greater then 1.  The current examples shown up to now have had 
this parameter set to 1.  The number of plotted points in the calling sequence is equal to N.  If we 
set the last parameter Ndiv to say 100, the sysODE function still computes N points for plotting, 
but internally the step size is 1/Ndiv the step size of (b-a)/N of each n point calculated.  
Internally, sysODE  just integrates 1/Ndiv times in a tight loop before returning a value to 
sysODE.   Some would call this a brute force method, but with a modern computer and their 
precision and speed, we can get a solution, it just takes a little longer. Refer to the plot below for 
a solution to this ODE with 1=μ 000. 
 
 

void  derivs(float x, float *y, float *dydx) { 
 dydx[1] = -y[0] + 1000.*(1.-y[0]*y[0])*y[1]; 
 dydx[0] = y[1]; 
} 
vector  ystart[] = { 1., 1. }; 
matrix M; 
float x[400], y[400], alpha, del; 
int    i; 
echof("This VERY STIFF ODE will take ~ 10 seconds\n"); 
M = sysODE(derivs, 0., 3000, ystart, 30000, 130); 
openPlot("sysODE Solution"); 
penS(0,1,128,0,255); 
plotxy(M[0], M[1], Sizeof(M[:0])); 
penS(0,3,210,0,0); 
grid(); 
xLabel("t - axis"); yLabel("y axis",0); 
Title("Solution to Van der Pol's Equation"); 
axisS(0,1,0,0,0); 
pCRT(); 
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The Lorenz Strange Attractor 
 
We can also solve ODE’s that have 1st derivatives of three or more variables (up to 10) with 
respect to a 4th variable. In effect solving 3 first order ODE’s.  As an example of such a system, 
we have a version of the Lorenz Strange Attractor  equations given by, 
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The shell script code for this example is: 
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void  derivs(float t, float *p, float *dpdt) { 
 dpdt[0] = -10*p[0] + 10*p[1]; 
 dpdt[1] = -p[0]*p[2] + 30*p[0] - p[1]; 
 dpdt[2] = p[0]*p[1] - 3*p[2]; 
} 
matrix M; 
vector  yStart[] = { -8, 8, 64 }; 
vector Vx, Vz; 
float tStart = 0, tEnd = 50, numPoints = 10000; 
 
M = sysODE(derivs, tStart, tEnd, yStart, numPoints, 10); 
openPlot("Lorenz Strange Attractor"); 
Vx = M[1]; Vz = M[3]; 
reduce(Vx, 0, 100); reduce(Vz, 0, 100); 
plotxy(Vx, Vz, Sizeof(Vx)); 
pCRT(); 
 

A Projectile Range Calculation 
 
A more sophisticated example is the calculation of a projectile given an initial elevation and 
velocity using Newtonian mechanics, plus an Air Drag Coefficient and Relative Air Density 
Model.  Were given the following range data for a projectile, and we want to calculate the range 
is meters, the flight time in seconds, the final velocity in seconds, and the fall angle in degrees. 
 

Elev. 
Mils 

Range 
meters 

Flight Time 
seconds 

Final velocity 
meters/sec. 

Fall Angle 
deg. 

0   240.8  
9.0 100 0.43 227.7 0.50 
18.6 200 0.88 215.2 1.10 
29.1 300 1.36 203.3 1.80 
40.4 400 1.87 192.0 2.60 
52.6 500 2.40 181.7 3.60 
65.9 600 2.97 171.9 4.70 
80.3 700 3.58 162.5 5.90 
96.0 800 4.22 153.9 7.30 
113.1 900 4.90 145.7 8.90 
131.9 1000 5.63 138.1 10.70 
152.5 1100 6.41 131.1 12.80 
175.2 1200 7.24 124.7 15.20 
200.4 1300 8.14 118.6 17.90 
228.6 1400 9.11 113.4 21.00 
260.3 1500 10.17 108.5 24.50 
296.7 1600 11.34 104.5 28.40 
339.2 1700 12.65 101.5 32.90 
390.8 1800 14.17 99.1 38.20 
458.3 1900 16.06 98.1 44.40 

 
We start with Newton’s second law of motion, i.e., f = ma = mg, where g = -9.8 m/s.  We note that mils 
equals pi/3200, and the initial muzzle velocity is 240.8 m/s.  The model for air density y versus altitude 
u in meters is given by y = (1 – 2.25577e-5 * u)ˆ5.25588.  The air drag coefficient is given by  
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-0.0005682.  If v is the instantaneous velocity in m/s, then the de-acceleration of g due to 
elevation and velocity is given by dec = v2(airDen*.0005682). The subroutine to calculate 
derivatives of this model is as follows, and the code of this shell script can be found in file 
C:\SlideRule\other\Projectile.txt. 

 
void  derivs(float t, float *p, float *dydt)  
{ 
 float Vxi, Vyi; 
 float Vy, Vx, V2, Speed, sinT, cosT, airDen, decl; 
 if(t == 0) { // if time zero, then first entry!! 
  Vxi = p[3]; Vyi = p[1]; // initialize initial velocities 
  p[1] = 0; p[3] = 0; } // initialize dynamic velocities  
 Vy = Vyi+p[1] - 9.8*t; Vx = Vxi+p[3]; // compute curent Y & X   
            velocities 
 dydt[0] = Vy; dydt[2] = Vx; // integrate Y & X velocities to altitude 
 V2 = Vy*Vy + Vx*Vx; // Compute current velocity squared 
 Speed = sqrt(V2);  // Compute current speed 
 sinT = Vy/Speed; cosT = Vx/Speed;// Compute sin/cos of current   
       trajectory 
 cosT = Vx/Speed;                // Compute relative air density 
 airDen = pow(1 - 2.25577e-5*p[0], 5.25588);// p[0] is current altitude 
 decl = V2*(airDen*.0005682); // Compute de-acceleration 
 dydt[1] = -decl*sinT;   // integrate y de-accel. to real time velocity 
 dydt[3] = -decl*cosT; // integrate x de-accel. to real time velocity 
} 
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The printed results of this simulation are as follows. 
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Init  Known Calculated  Per  Flight Flight Per    Final    Final   Per    Fall    Fall 
 Elev  Range    Range    cent  Time   Time  cent Velocity Velocity  cent  Angle   Angle  Off 
 mils    m        m     error   sec    sec error    m/s      m/s   error degrees degrees deg. 
 
  9.0   100  100.606793 +0.61  0.43  0.430  0.00    227.7  227.425 -0.12   0.5    0.53   0.03 
 18.6   200  199.987891 -0.01  0.88  0.880  0.04    215.2  214.942 -0.12   1.1    1.13   0.03 
 29.1   300  300.540427 +0.18  1.36  1.362 -0.11    203.3  203.016 -0.14   1.8    1.83   0.03 
 40.4   400  400.503156 +0.13  1.87  1.869  0.05    192.0  191.842 -0.08   2.6    2.64   0.04 
 52.6   500  500.105197 +0.02  2.40  2.405 -0.22    181.7  181.354 -0.19   3.6    3.57  -0.03 
 65.9   600  600.163669 +0.03  2.97  2.976 -0.21    171.9  171.422 -0.28   4.7    4.65  -0.05 
 80.3   700  699.825177 -0.02  3.58  3.580  0.00    162.5  162.128 -0.23   5.9    5.87  -0.03 
 96.0   800  799.604566 -0.05  4.22  4.222 -0.05    153.9  153.418 -0.31   7.3    7.28  -0.02 
113.1   900  899.178839 -0.09  4.90  4.904 -0.08    145.7  145.273 -0.29   8.9    8.88  -0.02 
131.9  1000  999.198502 -0.08  5.63  5.634 -0.07    138.1  137.671 -0.31  10.7   10.72   0.02 
152.5  1100 1098.985683 -0.09  6.41  6.412 -0.03    131.1  130.639 -0.35  12.8   12.82   0.02 
175.2  1200 1198.698393 -0.11  7.24  7.244 -0.06    124.7  124.171 -0.42  15.2   15.21   0.01 
200.4  1300 1298.534329 -0.11  8.14  8.141 -0.01    118.6  118.288 -0.26  17.9   17.92   0.02 
228.6  1400 1398.562224 -0.10  9.11  9.113 -0.03    113.4  113.000 -0.35  21.0   21.01   0.01 
260.3  1500 1498.265746 -0.12 10.17 10.169  0.01    108.5  108.378 -0.11  24.5   24.49  -0.01 
296.7  1600 1598.367020 -0.10 11.34 11.339  0.01    104.5  104.428 -0.07  28.4   28.46   0.06 
339.2  1700 1698.385774 -0.09 12.65 12.652 -0.02    101.5  101.260 -0.24  32.9   32.98   0.08 
390.8  1800 1798.644275 -0.08 14.17 14.177 -0.05     99.1   98.987 -0.11  38.2   38.19  -0.01 
458.3  1900 1899.370648 -0.03 16.06 16.070 -0.06     98.1   97.864 -0.24  44.4   44.45   0.05 
570.1  2000 2000.864125 +0.04 18.97 18.978 -0.04     98.8   98.783 -0.02  53.2   53.23   0.03 
 
Mean                    +0.00              -0.05                   -0.21                 0.01 
Std Dev                 +0.16              +0.07                   +0.11                 0.03 
 

The Minimum of a Function of a Single Variable 
 

Solving the minimum of a function of a single variable can be accomplished by using the Golden 
search method.*  So given the function  x2 – sin(x) between the bounds of 0 and 10, find the 
minimum in y and x.  Using internal function fmin, the shell script and plot follows.  

 
float funcX(float x) 
{ 
 float y; 
 y = x*x - sin(x); 
 return(y); 
} 
float xp, yp, x; 
int  i, N = 1001; 
vector Xp, Yp, y[N]; 
 
xp = fmin(funcX, 0, 1, 1.e-8); yp = funcX(xp); 
printf("xp = %.8f : Yp = %.8f\n", xp, yp); 
for(i = 0, x = 0; i < N; i++, x += .001) 
 y[i] = x*x - sin(x); 
Xp = { xp }; Yp = { yp }; 
openPlot("The minimum of a function of a single variable"); 
Title("The Minimum of a Function of a Single Variable"); 
ploty(0, .001, y, N); plotxy(Xp, Yp, 1); 
grid(); 
pCRT(); 

                                                 
* [1] pp 410-414 
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The Minimum’s of a Function of a Several Variables 
 

Solving the minimum of a function of a several variables can be accomplished by using the 
Nelder-Mead method.*$  So given the function  f(x,y,z) = 3(x^3 + y^3 - z^3) + (z -x -
y), find the minimum of x, y, z.  Using internal function fmins, the shell script and print out 
follows.  
 
float FuncX(float P[]) 
{ //   f(x,y,z) = 3(x^3 + y^3 -z^3) + (z - x - y) 
  float  t; 
  
  t = 3.*P[0]*P[0]*P[0]+3.*P[1]*P[1]*P[1]-3.*P[2]*P[2]*P[2]+P[2]-P[0]-P[1]; 
  return(t); 
} 
vector Dat[] = { 0, 0, 0}; 
vector S; 
float x[1000], y[1000], z[1000], P[1000]; 
float Array[10]; 
int  i; 
float t; 
 
printf("A Demo of Function fmins for finding the minimum\n"); 
printf("of an analytic function of several variables\n\n"); 
printf("For function f(x,y,z) = 3(x^3 + y^3 - z^3) + (z -x -y)\n\n"); 
printf("The initial guess for x,y,z "); Print(Dat); 
S = fmins(FuncX, Dat, 1000, 1.e-8); 

                                                 
* [1] pp 431-436 
$ [2]  
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printf("The coordinates at the minimum are "); Print(S); 
convToA(Array, S); 
printf("The value at the minimum is f(x,y,z) = %f\n", FuncX(Array)); 
*************************************************************************** 

A Demo of Function fmins for finding the minimum 
of an analytic function of several variables 
 
For the 1st function f(x,y,z) = 3(x^3 + y^3 - z^3) + (z -x -y) 
 
The initial guess for x,y,z vector -> Dat(3) 
[index 
0000           0           0           0 
] 
The coordinates at the minimum are vector -> S(3) 
[index 
0000     0.33333     0.33333    -0.33333 
] 
The value at the minimum is f(x,y,z) = -0.666667 

*************************************************************************** 
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 Chapter 17 - Control Engineering 

Introduction 
 
With the trend moving from analog systems to digital implementations, the Control Engineer 
must still master the field of Control Engineering in the analog domain.  The following topics 
cover some of the more basic models that occur repeatedly in the field of Control Engineering.  
This chapter will present some examples using Root-Locus techniques.  The Control Engineering 
Tool Box in Slide-Rule covers the basic functions, and can be considered a SISO (single input, 
single output) implementation in the analog domain.  Note that the shell script code listed in this 
chapter is without the annotation code, as one can generate this code with mouse and keyboard 
entries once a given plot is displayed, and have the code automatically inserted into their shell 
script file. 

A Unit-Step Response 
 

Given the transfer function 16/(s2 + 3s +16), plot the unit step response.  Using function stepTF, 
the shell script and plot is shown  below. 

#include "control.h" 
 
vector num[] = { 16 }; 
vector den[] = { 1, 3, 16 }; 
vector plotData; 
 
plotData = stepTF(num, den, 5); 
openPlot("A Unit Step Response"); 
Title("Unit-Step response of G(s) = 16/(s^2 +3s + 16)"); 
ploty(0, 5/500., plotData, 500); 
grid(); 
xLabel("Time(sec)"); 
yLabel("Amplitude",0); 
pCRT(); 
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A Unit-Impulse Response 
 

Given the transfer function 16/(s2 + 3s +16), plot the unit impulse response.  Using function 
impulseTF, the shell script and plot is shown  below. 
 

#include "control.h" 
vector num[] = { 16 }; 
vector den[] = { 1, 3, 16 }; 
vector plotData; 
 
plotData = impulseTF(num, den, 5);  
openPlot("A Unit Impulse Response"); 
Title("Unit-Impulse response of G(s) = 16/(s^2 +3s + 16)"); 
ploty(0, 5/500., plotData, 500); 
grid(); 
xLabel("Time(sec)"); 
yLabel("Amplitude",0); 
pCRT(); 
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Step Responses of Second-Order Systems 
 

Plot the step responses for the transfer function  1/s(s+2zetaN), for values of zetaN from 
0 to 2.* 

 
matrix Ct[12][500]; 
float Ont, Odt, Zeta, del, s1, s2; 
int  i, j; 
// generate data for plot 
 
del = 12./500.; 
for(i = 0; i < 12; i++) {  
 Zeta = i/10.+ .0001; 
 if(i == 11) { 
  Zeta = 2.; 

                                                 
* [1] pp 225-229 
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  s1 = Zeta + sqrt(Zeta*Zeta-1.);  
  s2 = Zeta - sqrt(Zeta*Zeta-1.);  
  printf("s1 = %f : s2 = %f\n", s1, s2); 
 } 
 for(j = 0, Ont = 0.; j < 500; j++) { 
  if(i < 10) { // Underdamped case, zeta < 1 
   Odt = Ont*sqrt(1.-Zeta*Zeta); 
   Ct[i][j] = 1.-exp(-Zeta*Ont)*sin(Odt + atan(sqrt(1.-  
      Zeta*Zeta)/Zeta))/sqrt(1.-Zeta*Zeta); 
  } 
  else if(i == 10) {  // Critically damp case, zeta = 1 
   Ct[i][j] = 1. -exp(-Ont)*(1. + Ont); 
  } 
  else { 
   Ct[i][j] = 1. + (exp(-s1*Ont)/s1 - exp(-   
     s2*Ont)/s2)/(2.*sqrt(Zeta*Zeta-1.));  
      Ct[i][j] = 1. - exp(-s2*Ont); 
  } 
  Ont += del; 
 } 
} 
openPlot("Unit-Step Response Curves"); 
pminmax(0,0,0,2); 
for(i = 0; i < 12; i++) 
  ploty(0, del, Ct[i], 500); 
grid(); 
xLabel("\omega_nt"); 
yLabel("c(t)",1); 
Title("Unit-Step Response Curves with \omega_n = 1 and values of \zeta"); 
arrowP(3.104063,0.530949,3.877106,0.426410,0); 
ptext(3.960357,0.401651,"2.0"); 
pCRT(); 
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Plot Bode plots for the transfer function )63/()( 23 KssKsG +++=  for K = 1, 4, and 8. 
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The shell script for this example follows (includes annotation functions). 
 

#include "control.h" 
 
matrix plotV1, plotV2, plotV3; 
vector num[] = { 8 }; 
vector den[] = { 1, 3, 6, 8 }; 
 
plotV1 = bodeTF(num, den, .1, 100, 0, 2); 
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num[0] = 4; den[3] = 4; 
plotV2 = bodeTF(num, den, .1, 100, 0, 2); 
num[0] = 1; den[3] = 1; 
plotV3 = bodeTF(num, den, .1, 100, 0, 2); 
openPlot("Bode Plot of Phase"); 
xLabel("Frequency (rad/sec)"); 
yLabel("Phase deg",1); 
plogxy(plotV1[0], plotV1[2], colSize(plotV1)); 
plogxy(plotV2[0], plotV2[2], colSize(plotV2)); 
plogxy(plotV3[0], plotV3[2], colSize(plotV3)); 
grid(); 
Title("Bode Plot of Phase for G(s) = K/(s^3 + 3s^2 + 6s +K)"); 
ptext(38.553023,-60.900963,"K = 8"); 
ptext(13.181368,-82.083906,"K = 1"); 
ptext(18.731417,-52.579092,"K = 4"); 
pCRT(); 
 
openPlot("Bode plot of Magnitude"); 
xLabel("Frequency (rad/sec)"); 
yLabel("Magnitude dB",1); 
plogxy(plotV1[0], plotV1[1], colSize(plotV1)); 
plogxy(plotV2[0], plotV2[1], colSize(plotV2)); 
plogxy(plotV3[0], plotV3[1], colSize(plotV3)); 
grid(); 
Title("Bode Diagam of Closed-Loop System G(s) = K/(s^3 + 3s^2 + 6s + K)"); 
arrowP(57.879088,-25.226960,68.483647,-8.060523,0); 
ptext(69.177403,-9.848693,"K = 8"); 
arrowP(59.563925,-34.704264,68.483647,-21.292985,0); 
ptext(69.177403,-23.081155,"K = 4"); 
arrowP(59.563925,-46.685007,68.483647,-33.452545,0); 
ptext(69.177403,-35.240715,"K = 1"); 
pCRT(); 
 

Nyquist Plots from State-Space 
 
 Given the State Space matrices A = (-1,-1,12,0), B = (1,1,1,0),  C = (1,0,0,1), D = (0,0,0,0) ,  
 plot the Nyquist plots. 
 

#include "control.h" 
matrix A[][2] = { -1, -1, 12, 0 }; 
matrix B[][2] = { 1, 1, 1, 0 }; 
matrix C[][2] = { 1, 0, 0, 1 }; 
matrix D[][2] = { 0, 0, 0, 0 }; 
matrix Pdat; 

  
 Pdat = nyquistSS(A, B, C, D, 0); 
  
 openPlot("Nyquist Plot from U1"); 
 pminmax(-2,2,-2,2); 
 Title("From: U_1 To: Y_1"); 
 xLabel("Real Axis"); 
 yLabel("Imaginary Axis",0); 
 penS(0,1,210,0,0); 
 plotxy(Pdat[0], Pdat[1], Sizeof(Pdat[:0])); 
 penS(0,1,0,210,0); 
 plotxy(Pdat[0], Pdat[2], Sizeof(Pdat[:0])); 
 grid(); 
 aspectR(1); 
 pCRT(); 
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 Pdat = nyquistSS(A, B, C, D, 1); 
 openPlot("Nyquist Plot from U1b"); 
 pminmax(-4,4,-4,4); 
 Title("From: U_1 To: Y_2"); 
 xLabel("Real Axis"); 
 yLabel("Imaginary Axis",0); 
 penS(0,1,210,0,0); 
 plotxy(Pdat[0], Pdat[1], Sizeof(Pdat[:0])); 
 penS(0,1,0,210,0); 
 plotxy(Pdat[0], Pdat[2], Sizeof(Pdat[:0])); 
 grid(); 
 aspectR(1); 
 pCRT(); 
 Pdat = nyquistSS(A, B, C, D, 2); 
 openPlot("Nyquist Plot from U2"); 
 pminmax(-1,1,-1,1); 
 Title("From: U_2 To: Y_1"); 
 xLabel("Real Axis"); 
 yLabel("Imaginary Axis",0); 
 penS(0,1,210,0,0); 
 plotxy(Pdat[0], Pdat[1], Sizeof(Pdat[:0])); 
 penS(0,1,0,210,0); 
 plotxy(Pdat[0], Pdat[2], Sizeof(Pdat[:0])); 
 grid(); 
 aspectR(1); 
 pCRT(); 
 Pdat = nyquistSS(A, B, C, D, 3); 
 openPlot("Nyquist Plot from U2b"); 
 pminmax(-4,4,-4,4); 
 Title("From: U_2 To: Y_2"); 
 xLabel("Real Axis"); 
 yLabel("Imaginary Axis",0); 
 penS(0,1,210,0,0); 
 plotxy(Pdat[0], Pdat[1], Sizeof(Pdat[:0])); 
 penS(0,1,0,210,0); 
 plotxy(Pdat[0], Pdat[2], Sizeof(Pdat[:0])); 
 grid(); 
 aspectR(1); 
 pCRT(); 
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Gain Adjustment for % Overshoot* 
 
Given the open-loop system as shown below, determine the value of the Gain K to yield a 25% 
overshoot, and plot the step response. 

R(s)
++

C(s)
K/s(s+2)(s+100)

-

E(s)

 
The first step is to plot the Root-Locus of the open loop system.  Once the Root-Locus plot is 
displayed, we then move the mouse cursor along the root-locus line while observing the 
continuous read out of the OS % values displayed on the right side of the monitor.  When the 
value is ~25%, we observe the K value to be ~601 (also displayed on the right side of one’s 
monitor).  We then set the numerator of the open-loop transfer function to 601, call function 
cloopTF to calculation the closed-loop system, and finally function stepTF to calculate plotting 
points for the step plot.  Note that these functions are defined in the Slide-Rule Functions 
Reference under the heading of Control Engineering Tool Box.  The shell script and plots are 
shown below. 
 
 

                                                 
* [2] pp 199-200 
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#include "control.h" 
 
vector num[] = { 1 }; 
vector den[] = { 1, 102, 200, 0 }; 
vector den1, num1, den2, num2, plotD; 
matrix sys; 
 
openPlot("Gain Agjustment for 25% over-shoot"); 
rlocusTF(num, den); 
grid(); 
pCRT(); 
num = { 601 }; 
sys = cloopTF(num, den, -1); Print(sys); 
num1 = sys[0]; den1 = sys[1]; 
Print(num1); Print(den1); 
openPlot("Step response for 25% over-shoot"); 
pminmax(0,10,0,1.5); 
plotD = stepTF(num1, den1, 10); 
ploty(0, 10./Sizeof(plotD), plotD, Sizeof(plotD)); 
pCRT(); 

 

A PI Compensator* 

 
Given the Plant as shown below, design a PI compensator with a damping ratio of 0.2. 

R(s) +
(s+1)(s+2)(s+12)

1
s

K(s+u)

-

Compensator Plant

 
                                                 
* [2] pp 504-509 
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The first step is to plot the Root-Locus of  the open loop Plant.  Once the Root-Locus plot is 
displayed, we then move the mouse cursor along the root-locus line while observing the 
continuous read out of the zeta values displayed on the right side of the monitor.  When the value 
of zeta is ~0.2, we observe the K value to be ~193.3 (also displayed on the right side of one’s 
monitor).  For a PI Compensator, we add a pole at the origin and a zero at 0.1.  We then plot a 
Root-Locus plot of this compensated system.  Again, moving the mouse cursor along the root-
locus line until zeta is ~0.2, we read out a K value of ~186.7. For the uncompensated system, we 
set the numerator of the plant to 193.9, call function cloopTF to calculation the closed-loop 
system, and finally function stepTF to calculate plotting points for the step plot.  For the PI 
Compensated system, we set K = 186.7, and repeat as above.  The shell script and plots for this 
example are shown below. 
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#include "control.h" 
vector num[] = { 1 }; 
vector den[] = { 1, 15, 38, 24 }; 
vector num1[] = { 1, 0.1 }; 
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vector den1[] = { 1, 15, 38, 24, 0 }; 
vector den2, num2, num3, den3, plotD; 
matcmplx sys; 
 
openPlot("Root Locus of Plant"); 
rlocusTF(num, den); 
pCRT(); 
openPlot("Root Locus of Plant with PI Compensator"); 
rlocusTF(num1, den1); 
pCRT(); 
num = { 193.3 }; 
sys = cloopTF(num, den, -1); 
num2 = real(sys[0]); den2 = real(sys[1]); Print(num2); Print(den2); 
num1 = { 186.7, 18.67 }; // 186.7*(s + 0.1) 
sys = cloopTF(num1, den1, -1); 
num3 = real(sys[0]); den3 = real(sys[1]); Print(num3); Print(den3); 
openPlot("Step responses"); 
plotD = stepTF(num2, den2, 40); 
ploty(0, 40./Sizeof(plotD), plotD, Sizeof(plotD)); 
plotD = stepTF(num3, den3, 40); 
ploty(0, 40./Sizeof(plotD), plotD, Sizeof(plotD)); 
pCRT(); 

 

A Lag Compensator* 

 
Given the Plant as shown in the PI Compensator, we want to design a Lag Compensator with the 
same damping ratio 0.2.  Note that a PI Compensator with a pole at the origin, requires an active 
integrator, which requires more current.  If we more the pole and zero to the left and close to the 
origin, we have a Lag Compensator, and we can use passive components to fabricate it.  Setting 
the pole at 0.01, we calculate the zero to be at 0.112 (refer to equations and discussion in the 
references).  The techniques using Root-Locus plots, are then the same as described in the 
previous example. 

                                                 
* [2] pp 509-515 
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#include "control.h" 
 
vector   num[] = { 1 }; 
vector   den[] = { 1, 15, 38, 24 }; 
vector   num1[] = { 1, 0.111 }; 
vector   den1, den2, num2, num3, den3, plotD; 
matcmplx sys; 
float Kpo; 
 
openPlot("Root Locus of Plant"); 
rlocusTF(num, den); 
pCRT(); 
openPlot("Root Locus of Plant with Lag Compensator"); 
den1 = polyM(den,(vector){ 1, .01 }); Print(den1); 
rlocusTF(num1, den1); 
pCRT(); 
num = { 194.9 }; 
sys = cloopTF(num, den, -1); 
num2 = real(sys[0]); den2 = real(sys[1]); 
Print(num2); Print(den2); 
Kpo = 1/gainTF(num, den); Print(Kpo); 
num1 = { 190.2, 21.1122 }; 
sys = cloopTF(num1, den1, -1); 
num3 = real(sys[0]); den3 = real(sys[1]); 
Print(num3); Print(den3); 
openPlot("Step responses"); 
plotD = stepTF(num2, den2, 40); 
ploty(0, 40./Sizeof(plotD), plotD, Sizeof(plotD)); 
plotD = stepTF(num3, den3, 40); 
ploty(0, 40./Sizeof(plotD), plotD, Sizeof(plotD)); 
pCRT(); 
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An Ideal Derivative Compensator (PD)* 

 
Given the Plant H(s) = K/[s(s+3)(s+8)],  design a PD Compensator with a 20% overshoot and a 
settling three times faster than the un-compensated system.  Note that if the closed loop pole (in 
the S domain) is not on the root-locus for the desired design, then we can re-shape the open-loop 
transfer function by adding a zero on the real axis at the appropriate point, such that the 
compensator has the transfer function of Gc = s + zc.  We first do a Root-Locus plot for the open-
loop Plant, and for a 20% overshoot, we read out K = ~47.1 with a settling time (Ts, read out 
from the right side of the monitor) = ~3.75 seconds.  For a settling time 3 times faster the real 
part of the pole on the same OS % line is -4/(3.75/3) = -3.12.  With the cursor thus placed, we 
read out the value of the compensating zero of ~ -4.24.  

R(s)
++

C(s)

-

E(s)
K/s(s+3)(s+8)
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* [2] pp 515-524 
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#include "control.h" 
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vector num[] = { 1 }; 
vector den[] = { 1, 11, 24, 0 }; 
vector num1, den1, den3, num3, plotD;; 
vector num2[] = { 1, 4.24 }; 
vector den2[] = { 1, 11, 24, 0 }; 
matcmplx sys; 
 
openPlot("Root Locus of Plant"); 
rlocusTF(num, den); 
pCRT(); 
 
openPlot("Root Locus of Plant with PD Compensator"); 
rlocusTF(num2, den2); 
pCRT(); 
num = { 47.1 }; 
sys = cloopTF(num, den, -1);  
num1 = real(sys[0]); den1 = real(sys[1]); 
num2 = { 53.4, 53.4*4.25 }; 
sys = cloopTF(num2, den2, -1); 
num3 = real(sys[0]); den3 = real(sys[1]); 
 
openPlot("Step responses"); 
plotD = stepTF(num1, den1, 5); 
ploty(0, 5./Sizeof(plotD), plotD, Sizeof(plotD)); 
plotD = stepTF(num3, den3, 5); 
ploty(0, 5./Sizeof(plotD), plotD, Sizeof(plotD)); 
pCRT(); 

 
 

A Lead-Lag Compensator* 

 
Given the Plant G(s) = K/[(s+5)(s+10)], add a lead-lag zero/pole such that the system will 
operate with a 20% over-shoot, and with a settling time of half that of the un-compensated 
system.  First add a pole at 0.01 to the open-loop Plants transfer function, then trace the root-
locus curve until %OS = 20 percent, and copy down the K value (~145), and the x and y 
coordinates (~  -1.6+3.1j).  For a reduction in settling time, the real part of the pole must be 
increased by a factor of 2, i.e., from -1.6 to -3.2.  Move the cursor to -3.2 along a zeta line such 
that %OS = ~ 20 percent and the real value of the cursor location is ~  -3.2.  Click your left 
mouse button and enter a zero value of -5 to cancel the pole value of -5.  The compensating pole 
Pc will be calculated at ~ -20 (and displayed on the right side of one’s monitor).  Construct 2nd 
root-locus plot to determine the gain value K (~1166.2).  Finally add a plot for verification.  The 
plot for this design follows, and the shell script code can be found in Slide-Rule sub-directory 
ControlSystems and file LeadLagcomp.txt. 

 

                                                 
* [2] pp 537-546 
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A Regulator Design in State-Space with Pole-Placement 
  

Given the Plant G(s) = 10(s+6)/[(s+1)(s+5)], calculate the gain K for a 20% overshoot, and a 
settling time of 1 second.  The block diagram of the State-space representation with feedback is 
shown below. 
 

B + f

A

-

x' C+

+

u x yr

-Ke
 

 
We first calculate the damping ratio ζ  by calling routine zetaOS in the Control Systems Toolbox, 

where )100/ln(%/)100/ln(% 2 OSOS +−= πζ (refer to [2], pg 195). Next we calculate 
 timesettling     ,/4 == sSn TTζω  (refer to [2], pg 197).  Function secondordSys is then called to 

calculate a second order system vector.  The poles of this 2nd order system are then calculated by 
calling function polyR.  Routine TFtoSSControl is then called to convert the transfer function 
into State-space Controllable Canonical form.  Next , function controlMat is called to determine 
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if the State-space representation is controllable.  The feedback vector is then calculated with a 
pole (-5.9) close to the zero (6) of the Plants transfer function.  Function ackerMan is called to 
calculate the feedback gain Ke (refer to [1],  pgs 834-836, or [2], pgs 730-732).  Note, function 
zetaOS can be found in the Slide-Rule’s Functions Reference (F7) under the Control Systems 
Toolbox and 2ndOrdCalc;  function TFtoSSControl can be found under TFtoSS.  The plot of this 
example can be found below; and the shell script code can be found in Slide-Rule sub-directory 
ControlSystems and file regulatorDemo.txt. 
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Controller versus Observable Design in State Space  
   

Given the Plant G(s) = (s+4)/[(s+1)(s+2)(s+6)], design the system for a 20% overshoot and a 
settling time of 4 seconds using the State-Space Controller method, then re-design using the 
State-Space Observerable method with a 10 times faster settling time.  The reader is referred to 
[2], pgs 745 – 757.    The plot of this example can be found below; the shell script code can be 
found in Slide-Rule sub-directory ControlSystems and file observerDemo.txt.   
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A Digital Compensator 
 

Given the closed loop transfer function  601/(s^3 + 102s^2 + 100s +601), convert this to a digital 
system (using the bilinear transform) with a sampling rate of 100 Hz, then plot the step response. 
The plot of this example can be found below; and the shell script code can be found in Slide-Rule 
sub-directory ControlSystems and file digitalComp.txt. 
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Note that in Chapter 7 we covered how one could change to a different custom menu.  If one selects 
under the Config tile User Menu Selection, then the Click for File Menu selection, an enters 
OgatasControl, one can observe 126 examples given in [1] that pertain to this software.  This was done to 
verify the integrity of this design tool.  
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 Chapter 18 - Microwave Transistor Amplifier Design 

  

 Introduction 
 

This module of Slide-Rule  has been designed as a basic Graphical RF design package using the Smith 
Chart as the basic overlay. It allows the Engineer or Student of Microwave engineering a quick and fast 
method of designing simple RF circuits up to and including complex circuits such as a multistage wide-
band amplifier.  Because of the graphical nature of this design package, the Engineer can get an intuitive 
feel in the design stages because of the visual presentation of displayed data. If you’re new to Smith Chart 
techniques or need a refresher course, read the first 3 references at the end of this chapter.  This chapter 
takes you through several design examples with step by step procedures along with a discussion of theory 
and equations where appropriate  Note: The user needs to create a sub-directory  (refer to (INFO) Script 
Directory = (…) in Chapter 2).under the SlideRule directory to store the shell script files that will be 
created by their designs using one’s mouse and keyboard. Also note that in Chapter 7 we covered how 
one could change to a different custom menu.  If one selects under the Config tile User Menu Selection, 
then the Click for File Menu selection, an enters gonzalez, one can observe 36 examples given in that text 
book that pertain to this software.  This was done to verify the integrity of this design tool.  
  

 A Simple Impedance Match* 
 

Design an impedance network that matches a 15 - j15 source to a 100 -j50 ohm load at 100 MHz.The 
matching network must also act as a low-pass filter between the source and the load. 
 
The requirement that the matching network act as a low-pass filter forces an L-configuration with a 
series-L, shunt-C configuration.   Since the source impedance is a complex impedance, it wants to see the 
load impedance as its complex conjugate.  Thus, we want to force the 100 -j50 ohm load to look like an 
impedance of 15 + j15 ohms. 
 
Solution: 
 

1. Under the File tile, select New…->Smith Chart…, and enter a file name.  Then change the grid 
to Imped+Admit reduced.  Then, under the Functions menu, select Point type... Plot...  and fill in 
the dialog box with the conjugate source impedance of 15 + j15 ohms in Cartesian coordinates.  
Repeat for the load impedance of 100 - j50 ohms and note the two plotted points.  Label these 
points as Z*S and ZH using the text insert mode. 

2. Under the Functions menu, select Impedance Match...   Const Conductance - Load -> Source, 
and fill in the load impedance of 100 - j50 ohms in Cartesian coordinates, and depress the enter 
key.  Note the change in the cursor.  Move the cursor down and note the line that is drawn along a 
constant conductance contour.  At the same time note the component value that is being displayed 
in the upper left-hand corner of the monitor.  When the drawn line along the constant 
conductance line intersects a constant resistance line that will pass through the conjugate source 
point, click the right most button on your mouse, and note that a solid line is drawn along with the 
component value of the shunt-C capacitor in the upper left corner of your monitor.  You can 
monitor the impedance by observing the impedance on the third line in the upper right hand 
corner as you move your mouse.  When this value is close to 15 ohms, click the right most button 
on your mouse.  If you mess up, go to the edit tile, and click the undo tile to start over. 

                                                 
* [2] pp 66-96, [1[ pp 92-141 
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3. Again under the Functions menu, select Impedance Match...   Const Resistance - Load -> 

Source.  At this point a dialog box will be presented requesting that you enter the appropriate 
impedance point.  However, the end impedance point of the series leg has been remembered, so 
just depress the enter key.  Note that if the end impedance point is slightly off, you can make a 
correctly in the dialog box.  Now, move the cursor up until the cursor window encloses the 
conjugate source impedance point, then click the right most mouse button.   
At this point the design is complete.  Note the Series-L inductor value as the second value listed 
in the upper left-hand corner.  The design circuit is shown in Figure 18.2a, and .plot for the above 
example is shown in Figure 18.2b. 

 
The equations used to determine the component values are as follows: 
 
 For a series-C component:   

C
XZ

=
1

0ω     
 For a series-L component: 
 

L XZ
= 0

ω  
  For a shunt-C component: 

C B
Z

=
ω 0   

 For a shunt-L component: 
    

L Z
B

= 0

ω  
 where, 

ω π= 2 f   
  
  X =  the reactance from the chart 
  B =  the susceptance from the chart 
 Z0 =  the Characteristic Impedance value 
 
 

Vs

15 - j15

28.2 pF 100 - j50

88.4 nH

 
           

Figure 18.2b 
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              Figure 18.2a 

 Small Transistor Design for MAG*$ 
 

You’re given a Motorola MPS571 High-Frequency Transistor.  Design the input and output impedance 
matching network for Maximum Available Gain (MAG) using discrete components with 50 ohm Source 
and Load impedance’s at 500 MHz with Vce equal 5 volts and Ic equal 15 mA.  The S-parameters for 
these conditions are as follows: 

 S11 = 0.28 @ -175 deg. 
 S21 = 5.62 @ 79 deg. 
 S12 = 0.10 @ 65 deg. 
 S22 = 0.18 @ -67 deg. 

Solution: 

                                                 
* [1] pp 22-70 
$ [2[ pp 103-107, pp 127-149 
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1. Under the File tile, select New…->Smith Chart…, and enter a file name.  Then modify the 

frequency to 500 MHz by selecting the Frequency Dialog box under the Functions Menu. Under 
the Grids tile, change the grid to Imped+Admit reduced. 

2. We next select the Small Transistor Calc...  Manual...  under the Functions menu and input the 
S-parameters as listed above.  This calculation is necessary to check the stability of the transistor 
at these operating conditions.  From this calculation, we observe the following info box as 
follows: 

 
K = 1.029 
DEL = 0.517 
MAG = 16.45 dB 
RefC(L) = 0.657@54.3deg. 
RefC(S) = 0.693@168.0deg. 
Gs = 2.85 dB, Go = 14.99 dB, Gl = -1.39 dB, Gt,max = 16.45 dB 
U      = .03, -0.27 < MaxErr)dB) < 0.28 

 
From this info box, since K >= 1.0, and  (DEL) is <= 1.0, we know that the transistor has stability 
under these conditions.  We note the Source and Load Reflections for MAG, and proceed with the 
design. Note also, the unilateral figure of merit (U) and Gt/Gtu (MaxErr - dB).   

3. Under the Functions menu, select Point type... Plot...  and fill in the dialog box with the source 
reflection coefficient of 0.693@168 degrees in Polar coordinates.  Repeat for the load reflection 
coordinate of 0.657@54.3 degrees and notes the two plotted points.  Label these points as 
\Gamma_S and \Gamma_L using the text insert mode as described in Chapter 2.   

4. Now, under the Functions menu, select Impedance Match...   Const R - Source -> Load, and fill 
in the source reflection coefficient of 0.693@168 deg. in Polar coordinates and depress the enter 
key.  Note the change in the cursor.  Move the cursor down and note the line that is drawn along a 
constant resistance contour.  At the same time note the component value that is being displayed in 
the upper left-hand corner of the monitor.  When the drawn line along the constant resistance line 
intersects a constant conductance line that will pass through the 50 ohms source load, click the right 
most button on your mouse, and note that a solid line is drawn along with the component value of 
the series inductor in the upper left corner of your monitor. Note that you can monitor the 
admittance by observing the admittance on the forth line in the upper right hand corner as you move 
your mouse.  When this value is close to 20 mmhos, click the right most-button on your mouse.  If 
you mess up, go to the edit tile, and click the undo tile to start over. 

5. Again under the Functions menu, select Impedance Match...   Const G - Source -> Load.  At this 
point a dialog box will be presented requesting that you enter the appropriate impedance point.  
However, the end impedance point of the series leg has been remembered, so just depress the enter 
key.  Now, move the cursor up until the cursor window encloses the source load of 50 ohms, then 
click the right most mouse button.   

6. Again, under the Functions menu, select Impedance Match...   Const G - Source -> Load, and fill 
in the load reflection coefficient of 0.657@54.3 deg. in Polar coordinates.  Move the cursor down 
and note the line that is drawn along a constant conductance contour.  At the same time note the 
component value that is being displayed in the upper left-hand corner of the monitor.  When the 
drawn line along the constant conductance line intersects a constant resistance line that will pass 
through the 50 ohm load, click the right most button on your mouse, and note that a solid line is 
drawn along with the component value of the shunt inductor in the upper left corner of your 

      monitor. Note that you can monitor the impedance by observing the impedance on the third line in 
the upper right hand corner as you move your mouse.  When this value is close to 50 ohms, click the 
right most button on your mouse.  If you mess up, go to the edit tile, and click the undo tile, then 
repeat this step. 
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7. Again under the Functions menu, select Impedance Match...   Const R - Source -> Load.  At 
this point a dialog box will be presented requesting that you enter the appropriate impedance 
point.  However, the end impedance point of the shunt leg has been remembered, so just depress 
the enter key.  Now, move the cursor up until the cursor window encloses the load of 50 ohms, 
then click the right most mouse button.  At this point the design is complete.  Note the Series-C 
component value as the fourth value listed in the upper left-hand corner.   

 
The design plot is shown in Figure18.3a, and the design circuit from the above example is shown in 
Figure 18.3b. 
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Figure 18.3b 
 
 
 

 Small Transistor Design for Specified Gain* 
 

You’re given a Motorola LP1001A High-Frequency Transistor.  Design the input and output impedance 
matching network for a gain of 8 dB using discrete components with 50 ohm Source and Load 
impedance’s at 1000 MHz with Vce equal 10 volts and Ic equal 10 mA.  The S-parameters for these 
conditions are as follows: 

S11 = 0.05 @ 127 deg. 
S21 = 2.87 @ 58 deg. 
S12 = 0.16 @ 58 deg. 
S22 = 0.45 @ -41 deg. 

Solution: 
 

1. Under the File tile, select New…->Smith Chart…, and enter a file name. Then modify the 
frequency to 1000 MHz by selecting the Frequency Dialog box under the Functions menu.  

2. We next select the Small Transistor Calc...  Manual...   under the Functions menu and input the 
S-parameters as listed above.  This calculation is necessary to check the stability of the transistor 
at these operating conditions.  From this calculation, we observe the following info box as 
follows: 

 
K = 1.076 
DEL = 0.440 
MAG = 10.85 dB 
RefC(L) = 0.683@39.6 deg. 
RefC(S) = 0.498@-152.3 deg. 
Gs = 1.24 dB, Go = 9.16 dB, Gl = 0.46 dB, Gt,max = 10.85 dB 
U     = 0.01, -0.11 < MaxErr(dB) < 0.11 

 
3. From this info box, since K >= 1.0 and  (DEL) < 1.0, , we know that the transistor has stability 

under these conditions.  Since we want only 8 dB of gain for this design, we go to the Constant 
Gain... dialog under the Functions menu to plot a constant gain circle of 8 dB.  In this case will 
select the Operating Power Gain option (Gp), and then select a Load Reflection coefficient on this 

                                                 
* [2] pp 132-133 
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circle.  Note that we also selected the corresponding locus of matched input reflection points in 
the opposite plane. 

Once we select a Load Reflection coefficient, we can go to the Source Refl. Calc... under the Functions 
menu to calculate the Source Reflection coefficient or select the Load Reflection coefficient with the 
mouse crosshair and select the Source Reflection Calc with the right most button on the mouse.  The plot 
for this procedure in shown in Figure 18.4a. 
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Figure 18.4a 
 
5. From the above we select the Load Reflection coefficient as .455@-55.9 by positioning our 

cursor over this point and selecting the Source Reflection coefficient calculation with the right 
mouse button to calculate the input reflection coefficient as .216@-62 and proceed to the 
impedance match to match the source and load impedance values to 50 ohms.  Note that we also 
plotted an input VSWR circle around the input reflection point of 1.5.  The impedance matching 
plot is shown in Figure18.4c and the circuit for this design is shown in Figure18.4c. 
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       Figure 18.4c 
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 Small Transistor Design for Minimum Noise* 
 

You’re given a Motorola MRF571 High-Frequency Transistor.  Design the input and output impedance 
matching network for a front end amplifier using discrete components with Zs = 35 - j60 ohms and Zl = 
50 -j50 ohms at 1000 MHz with Vce equal 6 volts and Ic equal 5 mA.  The gain is specified at 10 dB with 
a minimum noise figure of 2 dB.   The noise parameters for these conditions are Nf = 1.5 dB, equivalent 
noise resistance (Rn) = 7.5 ohms, and OPTΓ  = 0.48@134.  The S-parameters for these conditions are as 
follows: 
  
 S11 = 0.61 @ 178 deg. 
 S21 = 3.0 @ 78 deg. 
 S12 = 0.09 @ 37 deg. 
 S22 = 0.28 @ -69 deg. 
 
Solution: 

 
1. Under the File tile, select New…->Smith Chart…, and enter a file name. We then modify the 

frequency to 1000 MHz by selecting the Frequency Dialog box under the Functions menu.   
 

2. We next select the Small Transistor Calc...  under the Functions menu and input the S-
parameters as listed above. From this calculation, we observe the following info box as follows: 

K = 1.037 
DEL = 0.102 
MAG = 14.05 dB 
RefC(L) = 0.806@66.1 deg. 
RefC(S) = 0.891@-178.7 deg. 
Gs = 6.85 dB 
Go = 9.54 dB 
Gl = -2.24 dB 
Gt,max = 14.05 dB 
U      = -10.99 dB 
-0.67 < MaxErr(dB) < 0.72 

 
3. From this info box, since K >= 1.0 and  (DEL) <= 1.0, we know that the transistor has stability 

under these conditions.   
 

4. Since we want the minimum noise figure to be less then 2 dB, we process to the Noise Circle...  
dialog under the Functions menu to plot some noise circles.   

 
5. We next proceed to the Constant Gain... dialog menu under the Functions menu in order to plot 

a constant gain circle of 10 dB.  In this case we opted to plot the Gain Available circles (Ga).  
From this, an input Reflection Coefficient of 0.235@109.3 was selected.   

 
6. The Load Reflection coefficient of 0.304@81 is calculated by using the Load Refl. Calc... under 

the Functions menu.  The plot for this procedure is shown in Figure 18.5a. 

                                                 
* [2[ 138-149 
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            Figure 18.5a 
 
 
 
 
7. Using the above reflection coefficients, the impedance matching plot is shown in Figure 18.5b 

and the circuit is shown in Figure 18.5c 
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 Small Transistor Design - Stability*$ 
 

You’re given a Motorola MRF5711LT1 High-Frequency Transistor.  Design the input and output 
impedance matching network using discrete components with Zs = 35 +j50 ohms and Zl = 50 -j50 ohms 
at 500 MHz with Vce equal 6 volts and Ic equal 10 mA.  The gain is specified at 16 dB with a minimum 
noise figure of 1.6 dB.   The noise parameters for these conditions are Nf = 1.2 dB, equivalent noise 
resistance (Rn) = 7 ohms, and OPTΓ  = 0.36@104.  The S-parameters for these conditions are as follows: 
  
 S11 = 0.69 @ -160 deg. 
 S21 = 6.9 @ 92 deg. 
 S12 = 0.06 @ 34 deg. 
 S22 = 0.30 @ -92 deg. 
 
Solution: 

 
1. Under the File tile, select New…->Smith Chart…, and enter a file name. We then modify the 

frequency to 500 MHz by selecting the Frequency Dialog box under the Functions menu.   
 

2. We next select the Small Transistor Calc...  under the Functions menu and input the S-
parameters as listed above. From this calculation, we observe the following info box as follows: 

 
K = 0.59 
Proceed to Stability 
Circle calculation 

 
3. We next plot the stability circles by selecting the Stability Circles...  dialog under the Functions 

menu.  The S-parameters will be remembered from the Small Transistor Calc... dialog 
procedure, so just depress the enter key.  

 
4. We then proceed to the Constant Gain... dialog procedure under the Functions menu in order to 

plot the  constant gain circle of 16 dB.  In this case we opted to plot the Gain Available circles 
(Ga).  From this an input Reflection Coefficient of 0.167@-12.8 is selected.   

 
5. The Load Reflection coefficient of 0.245@98 is then calculated by using the Load Refl. Calc... 

dialog procedure under the Functions menu.  The plot for this procedure is shown in Figure 
18.5a. 

  
 
 

                                                 
* [2] pg 121, pp 133-138 
$ [1] pp 217-228 
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Figure 18.6a 
 
 
 
6. Using the above reflection coefficients, the impedance matching plot is shown in Figure 18.6b 

and the circuit is shown in Figure 18.6c. 
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 Micro-strip Matching - A Simple Example$ 
 

The amplifier block diagram shown in Figure18.7a shows the input and output reflection coefficients GS 
and GL.  Design the input and output matching networks in a 50 ohm system with a frequency of 2.4 GHz.  
The substrate material is Duriod. 
 

εr h mm= =2 23 0 75. , .  

S

ΓL
= 0.687@147degΓs

50Ω50Ω

50Ω

Input
Matching
Network

Output
Matching
Network

=0.714@87deg

Transistor

 
Figure 18.7a 

 
 
1. We start with an Impedance grid with Freq. = 2400MHz.   
2. Starting with the Input Matching Network, we first plot Γ S  by plotting this point using the Point 

type... Plot...  dialog procedure under the Functions menu.  
3. We next plot Ys by using the Point type...  1/Imped. point dialog menu under the Functions 

menu.  Refer to reference [2] as to why using the Y Smith is convenient when designing micro-
strip impedance matching networks. 

4. We next plot the VSWR circle by using the Point type...  VSWR Circle... dialog procedure 
under the Functions menu.   

5. Label these points using the text annotation feature.   
6. Now, under the Functions menu, select Micro-strip Match...  Stub Open Circuit...  , and input 

a value of  50 and also click the Direction radio button to select Towards Generator  and 
depress the enter key.  Note the line drawn along a constant resistance line as you push the cursor 
up and to the right.  Click the right most mouse button when the small cursor intersects the 
VSWR circle, and note the open-Stub=0.172 statement displayed in the upper left hand corner. 

7. Next select the Micro-strip Match...  Series Line...  , and click the Direction radio button to 
select Towards Generator and just depress the enter key since the endpoint of the last match is 
remembered and is the starting point of the next match.  Now pull the mouse down and note the 
line that is drawn along the constant VSWR circle.  Click the right most mouse button when the 
small cursor is over the  

      Admittance point YS.  Note the series-Line =0.111 as displayed in the upper left of your monitor.  At this 
point, the input network has been designed except for the calculation of the actual micro-strip dimensions.  
The design plot for the Input Matching Network is shown in Figure 18.7b.   

                                                 
$ [1] pp 141-175 
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Figure 18.7b 
 
8. Repeating the above procedure for the Output Matching Network except we use a short circuit 

stub, we get a short-Stub=0.073, and a series-Line=0.067 for the micro-strip parameters. The 
design plot for the Output Matching Network is shown in Figure 18.7c. 
 

9. Using the Micro-strip Calc...  dialog under the Functions menu, the line lengths including a 
quarter wave transformer (/4) to supply the VBB input voltage are as follows: 

  0.173 = 1.571 mm 
  0.111 = 1.008 mm 
  0.073 = 0.663 mm 
  0.067 = 0.608 mm 
  0.250 = 2.270 mm 
The circuit diagram including bypass and coupling capacitors for the above example in shown in 
Figure18.7d.   The above design could have used balanced shunt stubs which minimizes the transition 
between the shunt stubs and the series transmission line.  In this case, each side of the balanced stub 
must equal half of the total admittance.  For the input matching network, the open circuit balanced 
stubs are 0.121, and for the output network, the short circuit balanced stubs are 0.123 (at 50 ohms). 



  311 

 
 

.
2

.
5

1 2 3 5 1
0

.2

.2

.
5

.
5

1
1

2
2

3

3

5

5

10

10

1

2

50 Ω

ΓL = 0.714@87°

YL

 
 

Figure 18.7c 
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Figure 18.7d 
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 Micro-strip Matching - Different Characteristic Impedance’s 
 

We repeat the input network design of the last example, except will use micro-strip lines with 
different characteristic impedance’s. 

 
 

Solution 1: 
 

1. Repeat the first 5 steps in the previous example. 
2. Move your cursor over the ZS plotted point, and read off the value of YS = 33 -j46.8 milli-mhos in 

the upper right hand corner of your display.  Lets use a quarter wave transformer to transform the 
source impedance of 50 to a resistance of 1/0.033 = 30.2 ohms.  The resistance of this micro-strip 
line is given by Ω== 8.38)2.30(500Z  

3. Under the Functions menu, select Micro-strip Matching using a Quarter Wave Transformer 
– Y-Chart.  Move the cursor right until the resistance value in the upper left hand corner reads 
~38.8 ohms, then right click on your mouse. 

4. We can now use an open circuit shunt stub of 0.375 or a short circuit stub of 0.125 to transform the 
susceptance of -j46.79 milli-mhos.  The resistance of this line is 1/0.04679 = 21.372 . 

5. Select the Micro-strip Match... Stub Open Circuit... dialog procedure, and change the 
resistance value of the strip to 21.372 ohms.  The direction is Towards -> Generator (Source) 
and the from point is the admittance point of the 30.13  impedance point as remembered from step 
4.  Move the cursor down until the cursor is over YS and note the open-Stub=0.375 statement 
displayed in the upper left-hand corner of the monitor (as expected).  The design plot for the Input 
Matching Network is shown in Figure 18.7e, and the input network circuit for the above design is 
shown in Figure18.7f. 
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Solution 2: 

 
1. Plot the ZS point using the Point type... Plot... dialog as found under the Functions menu. 
2. Under the Functions menu, select Point type… VSWR, to plot a VSWR circle through ZS. 
3. Now select Micro-strip Matching using a Quarter Wave Transformer – Z Chart, and move 

the cursor left until the cursor intersects the VSWR circle, then right click on your mouse. 
4. Select the Micro-strip Match... Series Line... from under the Functions menu with direction 

Towards ->Generator, and move the cursor up until the cursor is over the ZS point, then right 
click on your mouse.  The length of this line is 0.046 and the resistance at this point is 9.28 ohms 

 
The design plot for the Input Matching Network is shown in Figure 18.7g, and the input network circuit 
for the above design is shown in Figure18.7h 
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 A Single Stub Tuner* 
 

You’re given a 50 ohm transmission line with a load of 125 -j150 ohms at a frequency of 100MHz.  
The transmission line has an effective relative dielectric constant ffε of 2.56.  Determine how far 
back from the load (d) you need to go to insert an open circuit stub of the same transmission medium 
and the length (l) of the stub such that you create a match to the 50 ohm line. 

 
Solution: 
 
1. The first step is to plot the impedance point of the load by using the Point type...  Plot... dialog 

menu under the Functions menu.   
2. We next plot the conjugate match circle with 0=λ , and then plot the admittance point of the 

load by using the Point type... 1/Imped... dialog selection under the Functions menu.   
3. Next, select Micro-strip strip...  Match Series Line... under the Functions menu, and depress the 

enter key. Move the small cursor up along the VSWR circle towards the conjugate match circle.  
When the small cursor intersects this point, click the right mouse button to determine the fraction 
of wave length traveled.   

4. Next select the Micro-strip Match... Open Circuit Stub...  under the Functions menu, and 
depress the enter key.  Move the cursor down and to the left until the small cursor intersects the 
center point on the chart.  Then click the right most-button on your mouse to determine the 
fraction of wave length traveled for an open circuit stub.  From this we have the series-line as 
0.158, and the open circuit line as 0.320.  The equation for the actual distances traveled is 

   

ff

p

f
xc

f
xv

xd
ε

λ ===  

                                                 
* [3] pp 97-102 
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From the above equation, 
 

d cm cm=
×

=
0158 3 10

10 256
29 625

10

8

. ( )
.

.
 

l cm cm=
×

=
0320 3 10

10 2 56
60

10

8

. ( )
.  

 
The plot of the above solution is shown is Figure18.8. 
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 A Double Stub Tuner* 
 

We repeat the Single Stub Tuner example as given above, but add the requirement that two short 
open circuit stubs be used, with the first one a distance of 0.30 from the load, while the second stub is 
3/8 from the first.  All other conditions remain the same.  Find the distances d1 and d2 that each stub 
is from the load, and the length of each stub (l1 and l2). 

                                                 
* [3]  pp 110-112 
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1. The first step is to plot the impedance point and admittance point of the load.  First select the 

Point type... Plot... dialog from under the Functions menu, and enter the impedance value of 125 
- j150 ohms.   

2. Repeat the above, but select the 1/Imped... selection to plot the admittance point.  
3. Next, select Micro-strip Match... Series Line... under the Functions menu, and depress the enter 

key. Move the small cursor to the right along the VSWR circle until the read out in the upper left 
hand corner reads series-Line=0.300.  This is shown as point 1 in Figure18.9a. 

4. Next, select the Conj Match Circle... from the Functions menu and enter a value of zero to plot 
the 1 + j conjugate match circle.   

5. Repeat the above, but enter 0.375 to plot the 1 + j conjugate match circle as rotated towards the 
generator by 3/8.  

6. Next, select Micro-strip Match... Open Circuit Stub... under the Functions menu, and depress 
the enter key.  Push the small cursor down until the small cursor intersects the rotated 1 + j 
conjugate match circle, then click the right most button on your mouse.  The read out in the upper 
left of your monitor should read open-Stub=0.157.   

7. Again, select Micro-strip Match... Series Line... under the Functions menu, and depress the 
enter key.  Push the small cursor around (clockwise) until the small cursor intersects the 1 + j 
conjugate match circle, then click the right most button on your mouse.  The read out in the upper 
left of your monitor should read series-Line=0.375.  

8. Now, select the Micro-strip Match...  Open Circuit Stub...  under the Functions menu, and 
depress the enter key.  Move the cursor down and to the right until the small cursor intersects the 
impedance value of 50 ohms as displayed in the upper right hand corner of your monitor.  Then 
click the right most button on your mouse to determine the fraction of wave length traveled for an 
open circuit stub.  From this we have the open circuit stub as 0.077.  The equation for the actual 
distances traveled is 
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             Figure 18.9a 
 

 
 
 

 Plotting of Performance Data 
 

Were given a Motorola MPS571 NPN Silicon High-Frequency Transistor.  Plot the S-Parameter data 
for VCE = 5 Volts and IC = 5 mA as given under directory MOTOROLA\MPS\MPS571a.S2P. 
 
1. We first start with an Impedance only grid with a characteristic impedance of 50 ohms and at any 

frequency to plot the S11 and S22 data. 
2. We list this file by selecting under the Functions menu, Parametric Data... List... , and select 

the file to open under the path MOTOROLA\MPS\MPS571a.S2P. The format of this data will 
look as follows.  Refer to Parametric Data in chapter 2 of this manual for a description. 
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3  MPS571A.S2P 
!  MPS571 
!  VCE=5V; IC=5mA 
#  GHZ S MA R 50 
!  S-PARAMETER  
0.2   0.62 -80 8.22 122 0.07 56 0.63 -44 
0.5   0.40 -148 4.52 87 0.11 50 0.36 -58 
1     0.39  155 2.51 54 0.16 48 0.23 -78 
1.5   0.46  122 1.86 32 0.23 42 0.15 -114 
2     0.59  100 1.50 14 0.31 33 0.14  173 

 
3. Under the Functions menu, select Parametric Data... Plot... , and select the file to open.  When 

the next dialog box appears, select S11 and S22, then reflection data. 
4. Open up a new plotting window by selecting File New...  under the File menu selection.  Repeat 

the above for S21 and S12, and reflection data. 
 
The plots of the above can be found in figures 3.10a & 3.10b.  The annotation was adding 
interactively by using the text annotation function.  Note!  Plot types of S21 and S12 are of polar type 
and can’t be mixed with S11 and S22, which are plotted on a Reduced Smith Chart overlay.  By using 
a network analyzer and recording S-parameter data as a file in Touchstone format, one can make 
similar plots as shown below.  Note that these plots were created, then a metafile was generated as 
described in Chapter 2, and inserted into this manual by using the insert picture function in Microsoft 
Word for Windows. 
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Figure 18.10a 
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 Handy notes for Impedance matching 
 

In the process of performing an impedance match, we need a few rules to keep in mind so that we 
come up with the right answer 
1. For a simple impedance match as illustrated in the first example of this chapter, take the 

conjugate of the source impedance, and then either: 
•    Start at the Conjugate Source Impedance and proceed to the Load such that the direction is 

Source->Load. 
•    Start at the Load Impedance and proceed to the Conjugate Source Impedance such that the 

direction is Load->Source. 
2. For impedance matching the input or output of a transistor, the reflection coefficients ΓS and ΓL 

are considered the Source points.   
•    For component values, if you start at these impedance values, then the direction is Source-

>Load, else if you start with the Load point and move to the Source point (ΓS or ΓL), then the 
direction is Load->Source. 

•     For micro-strip matching using shunt (series) stubs, first plot the impedance point of ΓS or ΓL, 
then (for shunt stubs only) its corresponding admittance point.  Then the direction (for stubs 
only) is Towards->Load from ΓS or ΓL, else Towards->Generator from the load.  For 
series line, take the shortest path, where Towards->Generator is clockwise and Towards-
>Load is counter-clockwise. 

3. For micro-strip matching a load to a transmission line using shunt (series) stubs, first plot the 
impedance point of the Load, then (for shunt stubs only) its corresponding admittance point.  
Then in all cases (shunt stubs, series stubs, or series line): 
•    Start at the admittance (impedance) point of the Load and move to the impedance of the line 

where the direction is Towards Generator. 
•    Start at the impedance of the line and move towards the admittance (impedance) point of the 

Load where the direction is Towards Load. 
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 Appendix  A - Functions Reference List 
 

 
The following is a list of the keywords used in the grammar and imbedded control along with the internal 
and shell script functions that the user can call (as subroutines).  As stated previously, all of the internal 
function names (case sensitive) are reserved and may not be used by the user for variable naming.  Please 
note that for Matrix/Vector types, that many of the mathematical functions as well as the assignment 
statements handle these types (refer to Chapter 4, Matrix Vector Grammar).  A description of the 
following functions may be found under the Help Menu/Functions Reference….  Note that for groups; 
Special Matrices, the Signal Processing Toolbox, the Control Engineering Toolbox, the Adaptive Filters 
Toolbox, the Statistical Signal Processing Toolbox , and the Forward Error Correction (FEC) Toolbox, 
that these are shell script files.  When using routines in these groups, the user must insert the following 
statements at the top of their shell script code. Note, that if all 4 of these include directives are included in 
a given shell script, that the code will be compiled in approximately 125 milliseconds for ~8500 lines of 
code, and will be stored in block 3 as shown in figure 3.2 of Chapter 3 until the given shell script finishes. 
 
 For Special Matrices:  #include “matrices.h” 
 For the Signal Processing Toolbox:  #include “sigsys.h” 
 For the Control Engineering Toolbox:  #include “control.h” 
 For the Adaptive Toolbox:  #include “sigsys.h” 
     For the Statistical Signal Processing Toolbox:  #include “sigsys.h” 
 For the Forward Error Correction  Toolbox:  #include “commsys.h” 
 
 

 Grammar and Imbedded Control  
 #define Define constant for conditional #ifdef  
 #else Else for conditional #ifdef/#ifndef  
 #endif End statement for #ifdef or #ifndef  
 #ifdef Conditional if (True) for compile  
 #ifndef Conditional if (False) for compile  
 break Break out of loop( for, do, while, switch)  
 case Part of switch statement  
 char Data type(8 bits) for ASCII strings definition  
 colSize Returns column size  
 complex Real and Imag. data type (64-bit floats)  
 const Definition of read only constants  
 continue Continue with a loop (for, do, while)  
 default Part of switch statement  
 dialog Generic Dialog Procedure  
 do while The do while statement  
 double Real data type (64-bit float)  
 echof Same as printf, but to display monitor also  
 else False part of if statement  
 exit Terminate shell with message  
 float Real data type (64-bit float)  
 for First part of for loop  
 if Conditional statement  
 int Fixed data type (32-bit, signed)  
 long Fixed data type (32-bit, signed)  
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 matcmplx Matrix of complex data types  
 matrix Matrix of double data types  
 pause Output message to display monitor and pause  
 printf printf statement (as standard in C)  
 Print Print of Matrix/Vector (Real/Complex arrays)  
 return Return from user subroutine  
 rowSize Returns row size  
 Sizeof Returns size of array in type elements  
 sprintf sprintf statement (as standard in C)  
 switch First part of complex multiple if/else  
 veccmplx Vector of complex data types  
 vector Vector of double data types  
 void The void return type  
 while The while statement  
   
   
 Mathematical  Functions  
 abs Absolute value  
 acos Inverse cosine  
 acosh Inverse hyperbolic cosine  
 arg Angle of  
 asin Inverse sine  
 asinh Inverse hyperbolic sine  
 atan Inverse tangent  
 atanh Inverse hyperbolic tangent  
 atan2 Inverse tangent y, x  
 ceil Rounds up to nearest integer  
 cmplx Complex number of  
 conj Complex conjugate  
 cos Cosine  
 cosh Hyperbolic cosine  

 exp Exponential  
 fabs Absolute value (for real argument)  
 floor Rounds down to nearest integer  
 fmod Modulo function  
 imag Imaginary part of complex number  
 ln Natural logarithm  
 log Natural logarithm  
 log10 Logarithm base 10  
 log2 Logarithm base 2  
 max Maximum function  
 min Minimum function  
 norm Square of  
 polar Complex of magnitude and angle  
 pow Power x of y  
 real Real part of complex num.  
 round Round to nearest integer  
 sigNum The Signum function  
 sin Sine  
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 sinh Hyperbolic sine  
 sqrt Square root  
 tan Tangent  
 tanh Hyperbolic tangent  
   
   
 Special Mathematical Functions  
 besselIn Bessel function In(x), n = 0,1,2...  
 besselJn Bessel function Jn(x), n = 0,1,2,...  
 besselKn Bessel function Kn(x), n = 0,1,2,...  
 besselYn Bessel function Yn(x), n = 0,1,2,...  
 beta Beta function B(z,w)  
 betaI Incomplete beta function Ix(a,b)  
 cosint Cosine Integral function  
 ellipticC Elliptic Integral of 1st kind  
 ellipticJ Jacobian Elliptic function  
 ellipticS Elliptic Integral of 2nd kind  
 erf Error function erf(x)  
 erfc Complementary of error function erf(x)  
 expi Exponental Integral Ei(x)  
 expn Exponental Integral En(x)  
 factorial Factorial function  
 gamma Gamma function  
 gammaln Natural log of gamma(x)  
 gammaP Incomplete gamma function P(a,x)  
 gammaQ Incomplete gamma function Q(a,x)  
 sinint Sine Integral function  
   
   
 Random Numbers and Distributions  
 chisqrPDF Chi-squared distribution (Central)  
 chisqrProb Chi-squared probabilities (Central)  
 chisqr2PDF Chi-squared distribution (Non-central)  
 chisqr2Prob Chi-squared probabilities (Non-central)  
 F PDF F Distribution  (Central)  
 F_Prob F probabilities  (Central)  
 normal Gaussian noise generation (vector/matrix)  
 normalPDF Normal (Gaussian)  Distribution  
 normalProb Probabilities from a Gaussian PDF  
 rand Uniform Random number generators  
 randn Gaussian number  
 rayleighPDF Rayleigh Distribution of a random variable  
 rayleighProb Rayleigh probabilities  
 ricianPDF Rician Distribution of a random variable  
 ricianProb Rician probabilities  
 srand Initialize randf with seed  
 uniform White noise generation (vector/matrix)  
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 Matrix/Vector Operations  
 cod Complete Orthogonal Decomposition  
 chol Cholesky factorization  
 det Matrix Determinant  
 eig Matrix Eigenvalues/Eigenvectors  
 expM Matrix Exponential  
 hess Hessenburg Decomposition  
 inv Matrix Inverse  
 kron Calculates the Kronecker tensor product  
 kurt Calculates kurtosis of vector  
 linequ Matrix linear equation solver  
 linequOD Matrix equation solver (over determined)  
 lsq Least squares fit  
 lu Matrix LU factorization  
 ′ The matrix transpose operator  
 .^ The matrix/vector power operator  
 * The Matrix Product operator  
 norms Matrix/Vector  norms  
 pinv Moore-Penrose pseudoinverse of a matrix  
 qr QR Decomposition  
 rank Rank of a Matrix  
 rcond Matrix reciprocal condition number  
 rref Reduced row echelon form  
 schur Schur Matrix Decomposition  
 skew Calculates skewness of vector  
 svd Singular value Decomposition  
 toeplitz Generates a Toeplitz matrix  
   
   
 Matrix/Vector Auxiliary Functions  
 ‘casting’ Convert matrix/vector to vector/matrix  
 cmplx Create complex matrix or complex vector  
 colLen Column size of a matrix (length)  
 colSize Column dimension of a matrix  
 convToA Matrix/Vector elements to array elements  
 copyV Copy a portion of a vector to a new vector  
 diag Diagonal of Matrix and Diagonal Matrices  
 dnSamp Down sample a matrix or vector  
 expand Matrix/Vector  expansion  
 even Even function  
 eye Square matrix to singular type  
 flip Reverse elements function  
 matGen Generate Matrix Sequence  
 matLin Generate Matrix Sequence  
 odd Odd function  
 ones Generate 1’s matrix or vector  
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 Print Matrix/Vector print  
 reduce Matrix reduction  
 reshape Matrix shaping  
 resizeM Matrix resize  
 resizeV Vector resize  
 rotM Matrix rotation  
 rowLen Row size of a matrix (length)  
 rowSize Row dimension of a matrix  
 sigNum The Signum function for real matrices/vectors  
 sort Sort a vector in ascending order  
 sortRows Sort matrix rows on column specification  
 trace Sum of diagonal elements of a matrix  
 triL Lower triangular part of matrix  
 triU Upper triangular part of matrix  
 upSamp Up sample a matrix or vector  
 vecGen Generate Vector Sequence  
 vecLin Generate Vector Sequence  
 vecLog Generate Vector Logarithmic Sequence  
 zero Zeros elements of matrix or vector  
 zeros Generate zero matrix or vector  
 zeros3D Generate 3D zero matrix or vector  
   
   
 Special Matrices  
 compan Companion matrix  
 gallery Wilson/Rosser matrices  
 hadamard Hadamard matrix  
 hankel Hankel matrix  
 hilb Hilbert matrix  
 magic Magic matrix  
 pascal Pascal matrix  
 toeplitz Toeplitz matrix  
 vander Vandermonde matrix  
 wilkinson Wilkinson test matrix  
    
    
 Digital Filters  
 butterF Butterworth Filter Design  
 chebyIF Chebyshev I Filter Design  
 chebyIIF Chebyshev II Filter Design  
 elliptF Elliptic Filter Design  
 filtadj Filter section gain adjustment  
 filter Vector filter function in direct form  
 filterD General filter function  
 firpm Parks McCellan FIR filter Design with vectors  
 firwin FIR Windowed Filter Design with vectors  
 firwindF FIR Windowed Filter Design  
 gainF Complex gain over range  
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 groupD Group Delay over range  
 hogSym Hogenauer Filter Design  
 iifixedR IIR Fixed Point Coefficients Response  
 impulseF Impulse Response  
 interpFIR Interpolated multi-FIR Filter design  
 MaxFlat MaxFlat FIR Symmetric Filter design  
 meteorFIR FIR constraint based design  
 ParksMc Parks McCellan FIR Filter Design  
 phaseF Complex phase over range  
 SavGov Savitzky-Golay Smoothing Filter  
 stepF Step Response  
 unwrap Phase unwrap  
   
   
 Spectral Analysis  
 blackharrisW 4-term Blackman harris window  
 blackWin Blackman window  
 chebyWin Dolph-Chebyshev window  
 chirpZ Chirp Z transform  
 dct Discrete Cosine Transform (DCT)  
 dct2 Two-dimensional DCT  
 dft Discrete Fourier Transform (DFT)  
 fft Fast Fourier Transform(FFT)  
 fft2 Two-dimensional FFT  
 fftshift Shift zero freq. of FFT to center of spectrum  
 gaussianWin Gaussian window  
 hammWin Hamming window  
 hannWin Hanning window  
 hilbert Hilbert transform  
 idct Inverse Discrete Cosine Transform (DCT)  
 idct2 Inverse two-dimensional DCT  
 idft Inverse Discrete Fourier Transform (IDFT)  
 ifft Inverse FFT  
 ifft2 Inverse of two-dimensional FFT  
 kaiserWin Kaiser window  
 taprectWin Tappered rectangular window  
 triangWin Triangular window  
   
   
 Correlation/Convolution  
 autocor The Auto Correlation function  
 autocorMat Generates the Autocorrelation matrix  
 autocovar The Auto Covariance function  
 autocovarMat Generates the Auto covariance matrix  
 conv The Convolve function  
 convMat Computes the convolution matrix  
 covarMat Computes the covariance matrix  
 corCoef Calculates the correlation coefficient  
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 crosscor The Cross Correlation function  
 crosscovar The Cross Covariance function  
   
   
 Signal Processing Toolbox  
 bilinear Bilinear transform  
 butterAP Butterworth analog prototype  
 butterDF Butterworth digital filter design  
 cas2dir Second-order cascade to direct form  
 casfilter Second-order cascade filter  
 chebyIAP Chebyshev I analog prototype  
 chebyIDF Chebyshev I digital filter design  
 cheby2AP Chebyshev II analog prototype  
 Cheby2DF Chebyshev II digital filter design  
 circonv Circular convolution  
 cirFold Circular folding of a sequence  
 cirshift Circular shift of samples in time domain  
 dfs Compute discrete Fourier Series Coefficients  
 dir2cas Direct form of filter to second-order sections  
 dir2fs Direct form of filter to frequency form  
 dir2par Direct form of filter to parallel 2nd order  
 ellipticAP Elliptic analog prototype  
 ellipticDF Elliptic digital filter design  
 evenodd Signal decomposition to even/odd parts  
 freqZ Frequency response of digital filters  
 FIR2Lat Direct form of FIR filter to all-zero Lattice form  
 FIRIIR2Lat Direct form of all pole/zero IIR filter to Lattice/Latter 

form 
 

 groupDelay Group delay calculation  
 IIR2Lat Direct form of IIR filter to lattice IIR form  
 Lat2FIR All-zero Lattice form to FIR direct form conversion  
 Lat2IIR Lattice IIR form to IIR direct form conversion  
 Lat2FIRIIR Lattice/Ladder form to pole/zero direct form 

conversion 
 

 LatFiltIIR Lattice/Ladder module to filter input sequence  
 LatFilt All-zero Lattice filter  
 ovrlpsav Overlap-save method of block convolution  
 par2dir Parallel 2nd order form to direct filter form  
 residueZ Z-transform partial fraction expansion  
 sigadd Signal addition  
 sigmult Signal multiplication  
 sigshift Signal shift  
 sinc Sinc signal generation  
 STrans Prototype frequency band transformation  
 Smapping Analog frequency band transformation  
 stepseq Step sequence generation  
 Zmapping Digital frequency band transformation  
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 Adaptive Filters  
 apa Affine Projection Algorithm. for an adaptive FIR filter  
 cma1 Constant Modulus Algorithm (CMA1-2) for an 

adaptive FIR filter 
 

 cma2 Constant Modulus Algorithm (CMA2-2) for an 
adaptive FIR filter 

 

 fastAlg The Fast Array algorithm for an adaptive FIR filter  
 fbnlms The fast Block (FFT) NLMS algorithm for an adaptive 

FIR filter 
 

 lms The LMS Algorithm for an adaptive FIR filter  
 nlms The Normalized LMS Algorithm for an adaptive FIR 

filter 
 

 pnlms The NLMS Alg. with power normalization  
 rca The Reduced-Constellation Algorithm (RCA) for an 

adaptive FIR filter 
 

 rls The Exponentially Weighted RLS Algorithm for an 
adaptive FIR filter 

 

 selms The Sign-Error LMS Algorithm for an adaptive FIR 
filter 

 

 steepestD The Steepest Descent Algorithm for an adaptive FIR 
filter 

 

 wienerF The Wiener FIR filter  
    
    
 Statistical Signal Processing Toolbox  
 AllPoleCor All Pole Signal Model using the Auto-Correlation 

Method 
 

 AllPoleCovar 
 

All Pole Signal Model using the Covariance Method  

 AllPoleModCo
var 

All Pole Signal Model using the Modified Covariance 
Method 

 

 BTpds Computes the Blackman-Tukey Periodogram  
 cepstralC LPC coefficients to Cepstral Coefficients  
 EigVecpds The Eigenvector Method for Power Density Spectrum  
 harrisPDS Computes a Periodogram using the Window Overlap 

Method 
 

 lar2rc 
LevDurbin 

Log area ratios to reflection coefficients 
The Levinson-Durbin Recursion 

 

 LevRecur The Levinson Recursion  
 lineSpec Line Spectral Pairs from LPC coefficients  
 LSIfilter FIR Least Squares Inverse Filter  
 MUSICpds The MUSIC Algorithm for Power Density Spectrum  
 MinNormpds The Minimum Norm Algorithm for Power Density 

Spectrum 
 

 rc2lar Reflection coefficients to Log Area Ratio’s  
 Welchpds Computes the Modified or Welch Periodogram  
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 Control Engineering Toolbox  
 ackerMan State feedback gain matrix calculation  
 bodeSS Bode plot data from State-space  
 bodeTF Bode plot data from transfer function  
 feedbackTF Feedback transfer functions connection  
 gainTF Gain to force step function to zero dB  
 gridRL Plot Root-Locus grid  
 impulseSS Impulse response from State-space  
 impulseTF Impulse response from transfer function  
 INITsysSS State-space response to initial condition  
 LTIsysSS State-space response from arbitrary input  
 LTIsysTF Transfer func.  response from arbitrary input  
 margin Gain and Phase margins from Bode plot  
 NicholsChart Plot of Nichols Chart  
 NicholsTF Nyquist locus plotted on Nichols Chart  
 nyquistPolar Nyquist plot data for Polar Plot  
 nyquistSS Nyquist plot data from state-space  
 nyquistTF Nyquist plot data from transfer function  
 parallelTF Parallel transfer functions connection  
 PZtoSS Pole-zero to state-space  
 PZtoTF Pole-zero to transfer function  
 residueS Partial fraction expansion from transfer func.  
 rlocusSS Root-locus plot from state-space  
 rlocusTF Root-locus plot from transfer function  
 RootLocusEna

ble 
Enable root-locus cursor read-out  

 secondOrdSys Computes a second order transfer function  
 seriesTF Series transfer functions connection  
 SStoPZ State-space to pole-zero  
 SStoTF State-space to transfer function  
 stepSS Step response from state-space  
 stepTF Step response from transfer function  
 TFtoPZ Transfer function to pole-zero  
 TFtoSS Transfer function to state-space  
   
   
 Forward Error Correction (FEC) ToolBox  
 decodeBCH A BCH decoder  
 decodeGolay A Golay (24.12) decoder  
 decodeRs A Reed-Solomon decoder  
 decodeViterbi A Rate ½ Viterbi decoder  
 encodeBCH A BCH encoder  
 encodeGolay A Golay (24,12) encoder  
 encodeRS A Reed-Solomon encoder  
 encodeViterbi A Rate ½ Viterbi encoder  
 initBCH Initialization of BCH decoder/encoder  
 initViterbi Initialization of a Viterbi decoder/encoder  
 logmap Turbo encoder/decoder  
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 Polynomials  
 chebyNodes Chebyshev nodes over interval  
 chebypol Chebyshev interpolating polynomial  
 lagrange Lagrange interpolating polynomial  
 poly Polynomial coefficients from its roots  
 polyC Characteristic polynomial of square matrix  
 polyD Polynomial derivative  
 polyDiv Polynomial division  
 polyFit Polynomial curve fit  
 polyM Polynomial multiplication for vector input  
 polyR Roots of polynomial for vector input  
 polyV Value of polynomial for vector input  
 proots Roots of polynomial  
   
   
 Curve Fitting  
 interpL Data interpolation with Lagrange approximation  
 interpS Data interpolation using natural cubic splines  
 lsqLine Least Squares Fit by data Linearization  
 polyFit Polynomial curve fit  
 spline Cubic Spline Interpolation  
   
   
 Statistics  
 delTime Measures execution times to within 1 msec.  
 cumsum Cumulative sum  
 cumprod Cumulative product  
 max Maximum value of array elements  
 maxI Max. value index of array elements  
 mean Mean value of array elements  
 min Minimum value of array elements  
 minI Min. value index of array elements  
 sum Summation of array elements  
 var Variance of array elements  
   
   
 Differential Equations and Numerical Integration  
 abmODE Adams-Bashforth-Moultin Method  
 hamODE Hamming Method  
 msmODE Milne-Simpson Method  
 rkf45 Runge-Kutta-Fehlberg Method  
 sysODE System of Equations ODE solver, 4th order Runge-

Kutta 
 

 sysODE2 System of Equations ODE solver,  5th order Runge-
Kutta 

 

 lsmBVP Linear Shooting Method B.V.P.  
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 rombI Romberg Integration  
 simpI Integration by Simpson's rule  
 diffExt Differentiation of F(x)  
 diffExt2 Partial differentiation of F(x,y)  
   
   
 Non-Linear Numerical Methods  
 fmin Local minimum of function f(x)  
 fmins Local minimum of function f(x,y,z, ... )  
   
   
 File I/O and String Functions  
 atof Convert ASCI string to floating value  
 atoi Convert ASCII string to integer value  
 close Close file  
 coordTextFile Read Coordinate Text File format to matrix  
 getc Get next ASCII character  
 input 

open 
Input dialog for a variable 
Open file 

 

 read Read file to array(int, float, complex)  
 readM Read file to matrix type  
 readV Read file to vector type  
 readExcel Read Excel data to matrix  
 readLine Read ASCII line to character buffer  
 rewind Rewind file  
 skip Skip data elements in file  
 skipLines Skip lines in ASCII opened file  
 sprintf sprintf statement (as standard in C)  
 strcat String catenation  
 strchr Search string for a character  
 strcpy String copy function  
 strcmp String compare function  
 strlen String length function  
 strstr String sub-compare  
 write Write data to file  
   
   
 Plotting Routines  
 arrowP Plot arrow, x/y plot  
 aspectR Aspect ratio for x/y plots  
 axisS Axis style, x/y plot  
 camloc3D Camera location - 3D plot  
 closePlot Close plot  
 color3D Set color value in palette  
 colorB Background color  
 colorBar Color palette selection - 3D plot  
 colorT Text color, x/y plot  
 confil3D Specifications for contour fill mode  
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 conlab3D Options for 3D contour labels  
 consurf3D 3D contour and/or surface plot  
 contourP Contour x/y plot with color mapping  
 contour A line Contour x/y plot  
 grid Plot grid lines, x/y plot  
 gridH Plot horizontal grid lines, x/y plot  
 histoP Histogram plot  
 linethick3C Line thickness for 3D line plot (plot3C)  
 movieP Set movie mode for multi x-y plots  
 openPlot Open plot  
 opts3D Options for 3D plot  
 pause Pause for keyboard or mouse input  
 pCRT Output plot to the display monitor  
 penS Pen style, x/y plot  
 ploglog Plot x and y array on log scale  
 plogxy Plot x array on log scale, y linear  
 plot3C Plot x/y/z curve(s) in 3D  
 plotx Plot x array  
 plotxy Plot x and y arrays  
 ploty Plot y array  
 pminmax Set min/max for x/y axes  
 pminmax3D Set min/max for x/y/z axes  
 polarP Polar plot  
 polarPdb Polar plot - dB  
 polezeroP Pole-Zero plot  
 pPrint Output plot to printer  
 ptext Plot text string, x/y plot at x/y point  
 Ptext3C Plot text string, x/y/z 3D plot (plot3C)  
 Ptics Force selection of number of tic marks  
 pxlogy Plot y array on log scale, x linear  
 stripsP Plot y array as strip chart  
 surfil3D Specifications for surface fill mode  
 surwir3D Specifications for wire mesh mode  
 Title Plot Title Label, x/y plot  
 vectorP Vector gradient plot  
 waterFallP 3D waterfall plot  
 xLabel Plot x-label  
 yLabel Plot y-label  
 zLabel Plot z-label  
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Appendix  B - Equations Reference for the Smith Chart Tool 
 

 
 
VSWR Circle 

 
The standing wave ratio of an impedance point is given by, 
   

S =
+
−

1
1

ρ
ρ

,
  

where ρ is equal to the reflection coefficient at the impedance point.  The value ρ 
is given by, 

   

ρ =
−
+

Z Z
Z Z

0

0

,
 

 
where Z0 is the Characteristic Impedance.  The complex Characteristic Impedance is given by, 
   

Z R j L
G j C0 =

+
+

ω
ω  

 
or to simplify 
  

Z L
C0 =

 
 
Then the locus of all impedance points with the same VSWR is thus a circle centered at the 
normalized impedance point of 1.0 with a constant radius equal to, 
   

r R X= +0
2

0
2

 
 
where  
      
 R0  equals the normalized impedance resistance 
      
 X0  equals the normalized impedance reactance 

 
Circuit Q Contour 
 
The Circuit Q contour is all those impedance points whose ratio of absolute reactance to absolute 
resistance is a constant.  In equation form this is give by, 
    

Q
X
Rc =
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where an impedance value is given by, 
      

Z R jX= +  
 
 
Admittance Point 
 
The equation for an Admittance point from a given Impedance point is given by, 
    

Y
Z

=
1

 
 
 
Conjugate Impedance Point 
 
Given an impedance point by the equation, 
    

Z R jX= +  
 

The conjugate impedance point is give by, 
    

Z R jX* = −  
 
 
Impedance Match - Component Values 
 
When performing an impedance match along constant resistance lines or constant conductance 
lines, the equations to determine the component values are as follows: 
 
For a series-C component: 

C
XZ

=
1

0ω   
For a series-L component:    

L XZ
= 0

ω   
For a shunt-C component: 

C B
Z

=
ω 0   

For a shunt-L component: 

L Z
B

= 0

ω  
  

where, 
   

ω π= 2 f     
X = the reactance from the chart 
B =   the susceptance from the chart 
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Z0 = the Characteristic Impedance value 
 
 
 
Small Transistor - Stability Circles 
 
A stability circle on a Smith Chart represents the boundary between values of source or load 
impedance values that can cause instability.  The boundary of the circle represents the locus of 
points that causes the Rowlett Stability Factor (K) to equal 1.  The center locations and the radii 
of the input and output stability circles are calculated as follows: 

 
1. Calculate Ds as follows:      (Eq. 4-1) 

    
D S S S SS = −11 22 12 21  

 
2. Calculate  C1       (Eq. 4-2) 
 

C S D Ss1 11 22= − *
     

 
3. Calculate C2       (Eq. 4-3) 

    
C S D Ss2 22 11= − *

      
 
4. Calculate the center of the input stability circle   (Eq.4-4) 

    

c C
S D

s
s

=
−
1

11
2 2

*

     
 
5. Calculate the radius of the input stability circle   (Eq. 4-5) 

    

r S S
S D

s
s

=
−

12 21

11
2 2

     
 
6. Calculate the center of the output stability circle   (Eq. 4-6) 

    

c C
S D

o
s

=
−
2

22
2 2

*

     
 
7. Calculate the radius of the output stability circle   (Eq. 4-7) 

    

r S S
S D

o
s

=
−

12 21

22
2 2
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Small Transistor - Constant Gain Circles 
 
Operating Power Gain - Gp 
 
The operating power gain is independent of the source impedance.  The center location and the 
radius of the circle for a given gain is calculated as follows: 
 

1. Calculate D2. 

D S2 22
2 2= − Δ

 
2. Calculate C2 using equation 4-3. 
3. Calculate desired gain      (Eq. 4-8) 

   

g DesiredGain absolute
S

p =
( )

21
2

    
4. Calculate the center location of the gain circle   (Eq. 4-9) 

   

c
g C

D gp
p

p

=
+

2

21

*

      
5. Calculate the radius of the gain circle    (Eq. 4-10) 

   

r
K S S g S S g

D gp
p p

p

=
− +

+

1 2
1

12 21 12 21
2 2

2    
 
Available Power Gain - GA 
 
The center location and the radius of the circle for a given gain is calculated as follows: 
 

1. Calculate D2 .  

D S2 11
2 2= − Δ  

2. Calculate C1 using equation 4-2. 
. 
3. Calculate desired gain      (Eq. 4-11) 

   

g DesiredGain absolute
SA =

( )

21
2

    
4. Calculate the center location of the gain circle   (Eq. 4-12) 

   

c g C
D gA
A

A

=
+

1

21

*

     
5. Calculate the radius of the gain circle    (Eq. 4-13) 

   

r
K S S g S S g

D gA
A A

A

=
− +

+

1 2
1

12 21 12 21
2 2

2    
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Unilateral Cases - S12 equals zero 
 
When S12 is small, we can represent the transducer power gain of the transistor by the following 
block diagram. 
 

Zs

ZlGs Go Gl

S11 S22

S

Γ ΓS L
 

 
The equation for the unilateral transducer gain is then given by, (Eq. 4-14) 
   
G G G GTu S O L=      
 
The equations for each block are given by, 
   

G
S

S
S

S

=
−

−

1
1

2

11
2

Γ

Γ    
 
G SO = 21

2

   

G
S

L
L

L

=
−

−

1
1

2

22
2

Γ

Γ  

  
Small Transistor – Constant VSWR Circles 
 
The input VSWR of a microwave amplifier is given by: 
 

  
S

S

a

a

ΓΓ−
Γ−Γ

=Γ
Γ−

Γ+
=

IN

*
IN

aIN 1
   where,

1
1

VSWR  

aΓ can also be computed by  
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  ( )( )
2

IN

2
IN

2

S

SSa

1

11
M

bygiven Factor Mismatch  Source  theis M  where,  M1

ΓΓ−

Γ−Γ−
=

−=Γ

S

S
 

 
 
The output VSWR of a microwave amplifier is given by: 
 

  
LOUT

*
LOUT

b
b

b
OUT 1

   where,
1
1

VSWR
ΓΓ−
Γ−Γ

=Γ
Γ−

Γ+
=  

bΓ can also be computed by  
 

  ( )( )
2

OUTL

2
OUT

2
L

L

LLb

1

11
M

bygiven Factor Mismatch  Load  theis M  where,  M1

ΓΓ−

Γ−Γ−
=

−=Γ

 

 
Small Transistor - Noise Circles 
 
The center location and radius of a given noise circle for a two-port amplifier is calculated as 
follows: 
 

1. Calculate a noise parameter Np     (Eq. 4-18) 

N
F F

R Zp
p

N

=
−

+min

4
1

0
0

2Γ
     

 where, 
   
 Fp  is the desired noise circle contour in dB 
Fmin  is the minimum noise figure (from the manufacture) 
 Z0 is the characteristic impedance 
 Γ0 is the reflection coefficient at the input port for minimum noise 
 RN is the effective noise resistance (from the manufacture) 
 
 

2. Calculate the center of the noise circle     (Eq. 4-19) 
   

c
Nn

p

=
+
Γ0

1        
 

3. Calculate the radius of the noise circle     (Eq. 4-20) 
    

( )r
N

N Nn
p

p p=
+

+ −
1

1
12

0
2Γ
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Small Transistor Calculations 
 
The Rowlett Stability Factor - K 
 
The Rowlett Stability factor is calculated as follows. 
 

1. Calculate Ds from equation 4-1. 
2. Calculate K as       (Eq. 4-21) 
   

K
D S S

S S
S=

+ − −1
2

2
11

2
22

2

21 12      
 
 

The Maximum Available Gain - MAG 
 
 
The Maximum Available Gain is only defined when K is >= 1. 
 
1. First calculate B       (Eq. 4-22) 
   
B S S Ds= + − −1 11

2
22

2 2

 
 
2. Then MAG is calculated as follows. 
  
if B >= 0  

1log10log10 2

12

21 −−+= KK
S
S

MAG  

if B < 0 Potential Unstable 

  1log10log10 2

12

21 −++= KK
S
S

MAG  

 
 
The Load Reflection Coefficient at MAG 
 
 

1. First calculate BL      (Eq. 4-23) 
   
B S S DL s= + − −1 22

2
11

2 2

 
 
2. Next calculate CL      (Eq. 4-24) 

  
C S D SL S= −22 11

*
 

 
3. Then  |ΓL| is calculated as follows. 

 
if BL >= 0  
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ΓL
L L L

L

B B C
C

=
− −2 24

2  
if BL < 0  
 

ΓL
L L L

L

B B C
C

=
+ −2 24

2  
 
ARG(ΓL) = -ARG(CL) 

 
The Source Reflection Coefficient at MAG   (Eq. 4-27) 
 

Γ
Γ

ΓS
L

L

S S S
S

= +
−

⎡

⎣
⎢

⎤

⎦
⎥11

12 21

221

*

 
 
Source Reflection Coefficient Calculation 
 
The Source Reflection Coefficient is calculated from a given Load Reflection Coefficient  by the 
following equation. 
 

Γ
Γ

ΓS
L

L

S S S
S

= +
−

⎡

⎣
⎢

⎤

⎦
⎥11

12 21

221

*

 
 
The input reflection coefficient is given by: 
 

⎥
⎦

⎤
⎢
⎣

⎡
Γ−

Γ
+=Γ

22L

L2112
11IN S1

SS
S  

 
Load Reflection Coefficient Calculation 
 
The Load Reflection Coefficient is calculated from a given Source Reflection Coefficient by the 
following equation. 
 
    

Γ
Γ

ΓL
S

S

S S S
S

= +
−

⎡

⎣
⎢

⎤

⎦
⎥22

12 21

111

*

    (Eq. 4-28) 
The output reflection coefficient is given by: 
 

⎥
⎦

⎤
⎢
⎣

⎡
Γ−

Γ
+=Γ

11S

S2112
22OUT S1

SS
S  

 
Small Transistor - Power Gain Equations 
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The Transducer Gain is the gain of the amplifier stage plus the gains from the effects of input and 
output matching networks.  From the S-parameters defined at a given operating state and for a 
given set of source and load reflection coefficients, the Transducer Gain is given by, 
   

2
22

2
2

212

2

1

1

1

1

L

L

SIN

S
T

S
SG

Γ−

Γ−

ΓΓ−

Γ−
=  

 
The Operating Power gain given by: 
 

2
22

2
2

212 1

1

1
1

L

L

IN
P

S
SG

Γ−

Γ−

Γ−
=  

 
The Available Power gain given by: 
 

2
2

212
11

2

1
1

1

1

OUTS

S
A S

S
G

Γ−Γ−

Γ−
=  

 
 
Y-Parameters to S-Parameters Conversion 
 
The Y-param -> S-param... dialog menu under the Functions menu is given to convert Y-
parameters to S-parameters.  The parameters once converted to S-parameters are saved internally 
and the S-parameters for other dialog procedures are initialized from these saved values.  Note 
that if you must first multiply each individual Y parameter by Z0 before enter the value in the 
dialog box.  The equations for these conversions are as follows: 
  

( )( )
( )( )

S
y y y y
y y y y

i r f

i r f
11

0

0

1 1
1 1

=
− + +

+ + −  

( )( )
S y

y y y y
r

i r f
12

0

2
1 1

=
−

+ + −  

( )( )
S

y
y y y y

f

i r f
21

0

2
1 1

=
−

+ + −  
( )( )
( )( )

S
y y y y
y y y y

i r f

i r f
22

0

0

1 1
1 1

=
+ − +

+ + −  
  
Micro-strip Calculation 
 
The Micro-strip Calc... dialog menu under the Functions menu is given to calculate either the 
width and length of a micro-strip line or it’s characteristic impedance.  It is based on the quasi-
TEM assumption and negligible thickness of the strip conductor. 
 
For the Width and Length calculation the inputs are as follows: 

1. The Characteristic impedance of the line. 
2. The thickness of the substrate. 
3. The dielectric constant of the substrate material ER. 
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4. The fractional wavelength of the micro-strip (lambda) 
5.    The operating frequency. 

 
The calculations are performed as follows:  (Reference[1], pp 143-152) 
 

1. First calculate parameters A and B as follows: 
    

A Z r r

r r

=
+

+
−
+

+
⎛
⎝
⎜

⎞
⎠
⎟0

60
1

2
1
1

0 23 011ε ε
ε ε

. .

 
    

B
Z r

=
377

2 0

π
ε  

 
2. Next calculate W, where W is the width of the line, and h is the thickness of the substrate. 

 
for W/h < 2 
  

2
8
2 −

= A

A

e
heW  

 
for W/h >= 2 
 

⎭
⎬
⎫

⎥
⎦

⎤
⎢
⎣

⎡
−+−

⎩
⎨
⎧ −

+−−−=
rr

r BBBW
εε

ε
π

61.039.0)1ln(
2

1
)1ln(12  

 
3. Calculate λ  

   
for W/h >= 0.6 
 

2/1

1255.0
0

)/)(1(63.01
⎥
⎦

⎤
⎢
⎣

⎡

−+
=

hWr

r

r ε
ε

ε
λ

λ  

 
for W/h < 0.6 
 

 
2/1

0297.0
0

)/)(1(6.01
⎥
⎦

⎤
⎢
⎣

⎡

−+
=

hWr

r

r ε
ε

ε
λ

λ  

 
4.    Calculate ffε  
 

  
21

⎟
⎠
⎞

⎜
⎝
⎛=

λ
ε ff  

 
5. Calculate the length of the micro-strip. 
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ffk
l

ε
λ

0

=   

where  

k f
c0

2
=

π

 
 
For the Characteristic Impedance calculation the inputs are as follows: 

1. The thickness of the substrate (h). 
2. The dielectric constant of the substrate material. 
3. The width of the micro-strip in millimeters (W). 

 
The calculations are performed as follows: 
 

1. First calculate the effective dielectric constant. 
   
For W/h >= 1  

2/1

121
2

1
2

1 −

⎟
⎠
⎞

⎜
⎝
⎛ +

−
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+
=

W
hrr
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εε

ε     

For W/h < 1  

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
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⎜
⎝
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⎜
⎝
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−
+

+
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− 22/1

104.0121
2

1
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1
h

W
W
hrr
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εε
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2. Next, calculate Z0 

For W/h >= 1  

)444.1/ln(667.0393.1/

120
0 +++

=
hWhW

Z ffεπ
 

 
For W/h < 1  
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⎜
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 JCP Software & Company License Agreement 
 
 

This is a legal agreement between you, the end user, and JCP Software & Company.  
 
USE of the SOFTWARE 
 
The term “SOFTWARE”, as used throughout this License Agreement will refer to the Slide-Rule

TM 
software package that is shipped with this package or container. 
 
GRANT OF LICENSE. JCP Software & Company grants the original purchaser (“Licensee”) the 
limited rights to possess and use the SOFTWARE and Reference Manual for its intended purposes.  You 
may not network the SOFTWARE or otherwise use it on more than one computer or computer terminal at 
the same time.  Licensee’s who are corporations, companies, government entities, schools systems, or any 
other non-personal user, must have a license for each and every computer that the software is installed on.  
Personal users, i.e., when the software is registered in a person’s name, may have the software installed 
on their assigned computer at work, on their personal PC, and also on their personal notebook. 
 
COPYRIGHT.  The SOFTWARE is owned by and remains the property of JCP Software & Company, 
is protected by United States copyright laws and international treaty provisions.  Therefore, you must treat 
the SOFTWARE like any other copyrighted material (e.g., a book or musical recording) except that you 
may either (a) make one copy of the SOFTWARE solely for backup or archival purposes,  and the copy 
shall display all propriety notices, and be labeled externally to show that the back-up copy is the property 
of JCP Software & Company, and that use is subject to this License, or (b) transfer the SOFTWARE to a 
single hard disk provided you keep the original solely for backup or archival purposes.  You may copy the 
written materials that accompany the SOFTWARE, however, and distribute them freely. 
 
WARRANTY.  The material is sold “as is”.  JCP Software & Company makes no warranties, either 
expressed or implied, regarding the enclosed computer software package, its merchantability, or its fitness 
for any particular purpose. 
  
DISCLAIMER.  License fees for the SOFTWARE do not include any consideration for assumption of 
risk by JCP Software & Company, and JCP Software & Company disclaims any and all liability for 
incidental or consequential damages arising out of the use or operation or inability to use the 
SOFTWARE, even if any of these parties have been advised of the possibility of such damages.  
Furthermore, Licensee indemnifies and agrees to hold JCP Software & Company harmless from such 
claims.  The entire risk as to the results and performance of the SOFTWARE is assumed by the Licensee.  
The warranties expressed in this License are the only warranties, expressed or implied, including but not 
limited to implied warranties of merchantability and of fitness for a particular purpose.  Some 
jurisdictions do not allow the exclusion or limitations of warranties, so the above limitations or exclusions 
may not apply to you. 
 


